首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   0篇
航空   6篇
航天技术   3篇
航天   1篇
  2016年   1篇
  2009年   2篇
  2008年   2篇
  2006年   1篇
  2005年   2篇
  1997年   2篇
排序方式: 共有10条查询结果,搜索用时 46 毫秒
1
1.
2.
The four identical Cluster spacecraft, launched in 2000, orbit the Earth in a tetrahedral configuration and on a highly eccentric polar orbit (4–19.6 RE). This allows the crossing of critical layers that develop as a result of the interaction between the solar wind and the Earth’s magnetosphere. Since 2004 the Chinese Double Star TC-1 and TC-2 spacecraft, whose payload comprise also backup models of instruments developed by European scientists for Cluster, provided two additional points of measurement, on a larger scale: the Cluster and Double Star orbits are such that the spacecraft are almost in the same meridian, allowing conjugate studies. The Cluster and Double Star observations during the 2005 and 2006 extreme solar events are presented, showing uncommon plasma parameters values in the near-Earth solar wind and in the magnetosheath. These include solar wind velocities up to ∼900 km s−1 during an ICME shock arrival, accompanied by a sudden increase in the density by a factor of ∼5 and followed by an enrichment in He++ in the secondary front of the ICME. In the magnetosheath ion density values as high as 130 cm−3 were observed, and the plasma flow velocity there reached values even higher than the typical solar wind velocity. These resulted in unusual dayside magnetosphere compression, detection of penetrating high-energy particles in the magnetotail, and ring current development following several successive injections of energetic particles in the inner magnetosphere, which “washed out” the previously formed nose-like ion structures.  相似文献   
3.
Cluster is an ESA/NASA four-spacecraft mission designed to study plasma processes in three dimensions using the combined data from eleven instruments on each spacecraft. This mission requires the combination of many measured parameters, and the Cluster community have taken the unprecedented step of establishing a set of high quality data products from all instruments at spin (~ 4 s) resolution which will be produced and distributed throughout the mission lifetime. The Cluster Science Data System (CSDS) is based on a set of eight data centres which are implemented and funded through national programmes. As part of CSDS, a Joint Science Operations Centre (JSOC) has been established to facilitate the commanding of the 44 instruments. It is co-located with the UK data centre at the Rutherford Appleton Laboratory (RAL), Didcot, United Kingdom. ESA's contribution to CSDS includes the provision of the CSDS User Interface, a dedicated network (CSDSnet) to interconnect the data centres, and the co-ordination of all activities at CSDS level. A wide scientific community wishing to use Cluster data will have differing data rights, experience and means of access. Users will also include those working with data sets from other missions, e.g., Soho, Geotail, Wind, Polar, Interball, and Equator-S. The Cluster Science Data System is primarily designed to support multi-instrument and multi-spacecraft data analysis and it is distributed across six national data centres in Europe, one in the USA, and one in China. CSDSnet will be used to interconnect the European data centres, the Joint Science Operations Centre at Didcot and the spacecraft Operations Control Centre at ESOC in Darmstadt.  相似文献   
4.
The European Space Agency's Cluster programme is designed to study the small-scale spatial and temporal characteristics of the magnetospheric and near-Earth solar wind plasma. The programme is composed of four identical spacecraft which will be able to make physical measurements in three dimensions. The relative distance between the four spacecraft will be varied between 200 and 18000 km during the course of the mission. This paper provides a general overview of the scientific objectives, the configuration and the orbit of the four spacecraft and the relation of Cluster to other missions.  相似文献   
5.
Double cusps have been observed on a few occasions by polar orbiting spacecraft and ground-based observatories. The four Cluster spacecraft observed two distinct regions, showing characteristics of a double cusp, during a mid-altitude cusp pass on 7 August 2004. The Wind spacecraft detected a southward turning of the Interplanetary Magnetic Field (IMF) at the beginning of the cusp crossings and IMF–Bz stayed negative throughout. Cluster 4 observed a high energy step in the ion precipitation around 1 keV on the equatorward side of the cusp and a dense ion population in the cusp centre. Cluster 1, entering the cusp around 1 min later, observed only a partial ion dispersion with a low energy cutoff reaching 100 eV, together with the dense ion population in the cusp centre. About 9 min later, Cluster 3 entered the cusp and observed full ion dispersion from a few keV down to around 50 eV, together with the dense ion population in the centre of the cusp. The ion flow was directed poleward and eastward in the step/dispersion, whereas in the centre of the cusp the flow was directed poleward and westward. In addition the altitude of the source region of ion injection in the step/dispersion was found 50% larger than in the cusp centre. This event could be explained by the onset of dayside reconnection when the IMF turned southward. The step would be the first signature of component reconnection near the subsolar point, and the injection in the centre of the cusp a result of anti-parallel reconnection in the northern dusk side of the cusp. A three-dimensional magnetohydrodynamic (MHD) simulation is used to display the topology of the magnetic field and locate the sources of the ions during the event.  相似文献   
6.
7.
During conditions of northward interplanetary magnetic field (IMF), the near-tail plasma sheet is known to become denser and cooler, and is described as the cold-dense plasma sheet (CDPS). While its source is likely the solar wind, the prominent penetration mechanisms are less clear. The two main candidates are solar wind direct capture via double high-latitude reconnection on the dayside and Kelvin–Helmholtz/diffusive processes at the flank magnetopause. This paper presents a case study on the formation of the CDPS utilizing a wide variety of space- and ground-based observations, but primarily from the Double Star and Polar spacecraft on December 5th, 2004. The pertinent observations can be summarized as follows: TC-1 observes quasi-periodic (∼2 min period) cold-dense boundary layer (compared to a hot-tenuous plasma sheet) signatures interspersed with magnetosheath plasma at the dusk flank magnetopause near the dawn-dusk terminator. Analysis of this region suggests the boundary to be Kelvin–Helmholtz unstable and that plasma transport is ongoing across the boundary. At the same time, IMAGE spacecraft and ground based SuperDARN measurements provide evidence of high-latitude reconnection in both hemispheres. The Polar spacecraft, located in the southern hemisphere afternoon sector, sunward of TC-1, observes a persistent boundary layer with no obvious signature of boundary waves. The plasma is of a similar appearance to that observed by TC-1 inside the boundary layer further down the dusk flank, and by TC-2 in the near-Earth magnetotail. We present comparisons of electron phase space distributions between the spacecraft. Although the dayside boundary layer at Polar is most likely formed via double high-altitude reconnection, and is somewhat comparable to the flank boundary layer at Double Star, some differences argue in favour of additional transport that augment solar wind plasma entry into the tail regions.  相似文献   
8.
9.
10.
A numerical model of an ion mass-spectrometer is developed based on the new type of charged-particle analyzer CAMERA suggested previously [1–3]. The spectrometer provides for complete instantaneous imaging of the flux distribution of various ions in a hemisphere. Such a type of the mass-spectrometer is chosen, which allows one to analyze a conelike beam of ions at the exit of the CAMERA. The mathematical model of the CAMERA with this time-of-flight mass-analyzer ensures sufficiently high mass resolution (M/ΔM > 100) at conserved imaging capabilities of the CAMERA. Such an instrument can find a wide application both in magnetospheric studies and in studying various objects of the solar system.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号