首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
航天技术   3篇
  2012年   1篇
  2011年   1篇
  2010年   1篇
排序方式: 共有3条查询结果,搜索用时 31 毫秒
1
1.
As part of a Bio-regenerative Life Support System (BLSS) for long-term space missions, plants will likely be grown at reduced pressure. This low pressure will minimize structural requirements for growth chambers on missions to the Moon or Mars. However, at reduced pressures the diffusivity of gases increases. This will affect the rates at which CO2 is assimilated and water is transpired through stomata. To understand quantitatively the possible effects of reduced pressure on plant growth, CO2 and H2O transport were calculated for atmospheres of various total pressures (101, 66, 33, 22, 11 kPa) and CO2 concentrations (0.04, 0.1 and 0.18 kPa). The diffusivity of a gas is inversely proportional to total pressure and shows dramatic increases at pressures below 33 kPa (1/3 atm). A mathematical relationship based on the principle of thermodynamics was applied to low pressure conditions and can be used for calculating the transpiration and photosynthesis of plants grown in hypobaria. At 33 kPa total pressure, the stomatal conductance increases by a factor of three with the boundary layer conductance increasing by a factor of ∼1.7, since the leaf conductance is a function of both stomatal and the boundary layer conductance, the overall conductance will increase resulting in significantly higher levels of transpiration as the pressure drops. The conductance of gases is also regulated by stomatal aperture in an inverse relationship. The higher CO2 concentration inside the leaf air space during low pressure treatments may result in higher CO2 assimilation and partial stomata closure, resulting in a decrease in transpiration rate. The results of this analysis offer guidelines for experiments in pressure and high CO2 environments to establish ideal conditions for minimizing transpiration and maximizing the plant biomass yield in BLSS.  相似文献   
2.
Plants grown on long-term space missions will likely be grown in low pressure environments (i.e., hypobaria). However, in hypobaria the transpiration rates of plants can increase and may result in wilting if the water is not readily replaced. It is possible to reduce transpiration by increasing the partial pressure of CO2 (pCO2), but the effects of pCO2 at high levels (>120 Pa) on the growth and transpiration of plants in hypobaria are not known. Therefore, the effects of pCO2 on the growth and transpiration of radish (Raphanus sativus var. Cherry Bomb II) in hypobaria were studied. The fresh weight (FW), leaf area, dry weight (DW), CO2 assimilation rates (CA), dark respiration rates (DR), and transpiration rates from 26 day-old radish plants that were grown for an additional seven days at different total pressures (33, 66 or 101 kPa) and pCO2 (40 Pa, 100 Pa and 180 Pa) were measured. In general, the dry weight of plants increased with CO2 enrichment and with lower total pressure. In limiting pCO2 (40 Pa) conditions, the transpiration for plants grown at 33 kPa was approximately twice that of controls (101 kPa total pressure with 40 Pa pCO2). Increasing the pCO2 from 40 Pa to 180 Pa reduced the transpiration rates for plants grown in hypobaria and in standard atmospheric pressures. However, for plants grown in hypobaria and high pCO2 (180 Pa) leaf damage was evident. Radish growth can be enhanced and transpiration reduced in hypobaria by enriching the gas phase with CO2 although at high levels leaf damage may occur.  相似文献   
3.
The AMSR-E observed brightness temperatures over India have been analyzed to study the impact of manmade radio frequency interference (RFI) sources for the two dry months April and May from 2003 to 2010. It is observed that the brightness temperature values far exceed 300 K over different locations of India indicating the presence of RFI. It is pronounced over the urban areas. The regions over Punjab, Haryana and Delhi show a marked increase in spread of the RFI affected areas. The RFI affected areas have increased from 15% to 30% from 2003 to 2007 and decreased thereafter. A maximum brightness temperature of 353 K is observed in April 2007 indicating very high level of RFI.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号