首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14篇
  免费   0篇
航天技术   11篇
航天   3篇
  2019年   1篇
  2013年   2篇
  2008年   1篇
  2007年   2篇
  2004年   1篇
  2003年   2篇
  2002年   1篇
  2000年   1篇
  1993年   2篇
  1981年   1篇
排序方式: 共有14条查询结果,搜索用时 15 毫秒
1.
The phenomenon of light flashes (LF) in eyes for people in space has been investigated onboard Mir. Data on particles hitting the eye have been collected with the SilEye detectors, and correlated with human observations. It is found that a nucleus in the radiation environment of Mir has roughly a 1% probability to cause an LF, whereas the proton probability is almost three orders of magnitude less. As a function of LET, the LF probability increases above 10 keV/micrometer, reaching about 5% at around 50 keV/micrometer.  相似文献   
2.
The SilEye experiment aims to study the cause and processes related to the anomalous Light Flashes (LF) perceived by astronauts in orbit and their relation with Cosmic Rays. These observations will be also useful in the study of the long duration manned space flight environment. Two PC-driven silicon detector telescopes have been built and placed aboard Space Station MIR. SilEye-1 was launched in 1995 and provided particles track and LF information; the data gathered indicate a linear dependence of FLF(Hz) ( 4 2) 10(3) 5.3 1.7 10(4) Fpart(Hz) if South Atlantic Anomaly fluxes are not included. Even though higher statistic is required, this is an indication that heavy ion interactions with the eye are the main LF cause. To improve quality and quantity of measurements, a second apparatus, SilEye-2, was placed on MIR in 1997, and started work from August 1998. This instrument provides energetic information, which allows nuclear identification in selected energy ranges; we present preliminary measurements of the radiation field inside MIR performed with SilEye-2 detector in June 1998.  相似文献   
3.
4.
In this work we present preliminary results of nuclear composition measurements on board space station MIR obtained with SILEYE-2 particle telescope. SILEYE-2 was placed on MIR in 1997 and has been working since then. It consists of an array of 6 active silicon strip detectors which allow nuclear and energetic identification of cosmic rays in the energy range between approximately 30 and 200 MeV/n. The device is attached to an helmet and connected to an eye mask which shields the cosmonaut eyes from light and allow studies of the Light Flashes (LF) phenomenon. In addition to the study of the causes of LF, the device is used to perform real time long term radiation environment monitoring inside the MIR, performing measurements in solar quiet and active days.  相似文献   
5.
The ALTEA project participates to the quest for increasing the safety of manned space flights. It addresses the problems related to possible functional damage to neural cells and circuits due to particle radiation in space environment. Specifically it aims at studying the functionality of the astronauts' Central Nervous Systems (CNS) during long space flights and relating it to the peculiar environments in space, with a particular focus on the particle flux impinging in the head. The project is a large international and multidisciplinary collaboration. Competences in particle physics, neurophysiology, psychophysiology, electronics, space environment, data analyses will work together to construct the fully integrated vision electrophysiology and particle analyser system which is the core device of the project: an helmet-shaped multi-sensor device that will measure concurrently the dynamics of the functional status of the visual system and passage of each particle through the brain within a pre-determined energy window. ALTEA is scheduled to fly in the International Space Station in late 2002. One part of the multi-sensor device, one of the advanced silicon telescopes, will be launched in the ISS in early 2002 and serve as test for the final device and as discriminating dosimeter for the particle fluences within the ISS.  相似文献   
6.
The report presents some results on the cosmic radiation intensity research carried out with the high-altitude balloons for the period of 1977–1979. The intensity of gamma-radiation with the energy above 40 MeV was measured in two balloon flights at an altitude of 4–7 g/cm2 of residual atmosphere in the vicinity of the geomagnetic equator. A temporal analysis of the intensity to discover fluctuations with periods in the range of 4–60 min was made. Quasi-periodic fluctuations of gamma-radiation intensity with 5 min periods, amplitude ~20% and duration of several hours were discovered. Possible mechanisms of such fluctuation appearance are discussed.The report gives the results of measuring downward, upward and horizontal electron fluxes in the vicinity of the equator. The obtained data and the data provided by satellites are compared. The report discusses the prospects of further joint Soviet-Indian research of cosmic gamma-radiation.  相似文献   
7.
The preliminary design of the new space gamma-ray telescope GAMMA-400 for the energy range 100 MeV–3 TeV is presented. The angular resolution of the instrument, 1–2° at Eγ ∼ 100 MeV and ∼0.01° at Eγ > 100 GeV, its energy resolution ∼1% at Eγ > 100 GeV, and the proton rejection factor ∼106 are optimized to address a broad range of science topics, such as search for signatures of dark matter, studies of Galactic and extragalactic gamma-ray sources, Galactic and extragalactic diffuse emission, gamma-ray bursts, as well as high-precision measurements of spectra of cosmic-ray electrons, positrons, and nuclei.  相似文献   
8.
Two observations of the Vela Pulsar in the energy range 50–5000 MeV performed with the GAMMA-1 telescope in 1990 and 1991 allowed us to study time variability of the pulsar light curve and energy spectra. The light curve for Eγ > 50 MeV shows definite variations in the first interpeak phase interval. The energy spectra of the two main peaks and first interpeak in the lightcurve vary significantly below 200 MeV.  相似文献   
9.
The GAMMA-400 currently developing space-based gamma-ray telescope is designed to measure the gamma-ray fluxes in the energy range from ~20?MeV to several TeV in the highly elliptic orbit (without shadowing the telescope by the Earth) continuously for a long time. The physical characteristics of the GAMMA-400 gamma-ray telescope, especially the angular and energy resolutions (at 100-GeV gamma rays they are ~0.01° and ~1%, respectively), allow us to consider this space-based experiment as the next step in the development of extraterrestrial high-energy gamma-ray astronomy. In this paper, a method to improve the reconstruction accuracy of incident angle for low-energy gamma rays in the GAMMA-400 space-based gamma-ray telescope is presented. The special analysis of topology of pair-conversion events in thin layers of converter was performed. Applying the energy dependence of multiple Coulomb scattering for pair components, it is possible to estimate the energies for each particle, and to use these energies as weight in the angle reconstruction procedure. To identify the unique track in each projection the imaginary curvature method is applied. It allows us to obtain significantly better angular resolution in comparison with other methods applied in current space-based experiments. When using this method for 50-MeV gamma rays the GAMMA-400 gamma-ray telescope angular resolution is about 4°.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号