首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
航空   1篇
航天技术   1篇
  2004年   1篇
  1996年   1篇
排序方式: 共有2条查询结果,搜索用时 413 毫秒
1
1.
The Cassini-Huygens Cosmic Dust Analyzer (CDA) is intended to provide direct observations of dust grains with masses between 10−19 and 10−9 kg in interplanetary space and in the jovian and saturnian systems, to investigate their physical, chemical and dynamical properties as functions of the distances to the Sun, to Jupiter and to Saturn and its satellites and rings, to study their interaction with the saturnian rings, satellites and magnetosphere. Chemical composition of interplanetary meteoroids will be compared with asteroidal and cometary dust, as well as with Saturn dust, ejecta from rings and satellites. Ring and satellites phenomena which might be effects of meteoroid impacts will be compared with the interplanetary dust environment. Electrical charges of particulate matter in the magnetosphere and its consequences will be studied, e.g. the effects of the ambient plasma and the magnetic field on the trajectories of dust particles as well as fragmentation of particles due to electrostatic disruption.The investigation will be performed with an instrument that measures the mass, composition, electric charge, speed, and flight direction of individual dust particles. It is a highly reliable and versatile instrument with a mass sensitivity 106 times higher than that of the Pioneer 10 and 11 dust detectors which measured dust in the saturnian system. The Cosmic Dust Analyzer has significant inheritance from former space instrumentation developed for the VEGA, Giotto, Galileo, and Ulysses missions. It will reliably measure impacts from as low as 1 impact per month up to 104 impacts per second. The instrument weighs 17 kg and consumes 12 W, the integrated time-of-flight mass spectrometer has a mass resolution of up to 50. The nominal data transmission rate is 524 bits/s and varies between 50 and 4192 bps.This revised version was published online in July 2005 with a corrected cover date.  相似文献   
2.
The advantages of ruggedness, no bias requirement, ease of large area sensor construction, high counting rate capability, and space reliability inherent in the Polyvinylidene Fluoride (PVDF) dust sensors which have been under development at the University of Chicago over the last decade have led to PVDF flux/mass/velocity/trajectory systems which have advantages over other systems and are well suited for a variety of dust studies in space. The thermal stability characteristics and flux/mass/velocity/trajectory determining characteristics of PVDF and Vinylidene Fluoride/Trifluoroethylene (PVDF copolymer) dust sensors are described. We summarize the objectives and designs of our earlier VEGA- comet Halley instruments, a PVDF velocity/trajectory dust instrument for launch on the Advanced Research and Global Observation Satellite (ARGOS) in January 1996, and a PVDF high flux dust instrument for launch on the CASSINI spacecraft to Saturn in October 1997.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号