首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
航空   4篇
  2000年   1篇
  1999年   1篇
  1997年   1篇
  1995年   1篇
排序方式: 共有4条查询结果,搜索用时 46 毫秒
1
1.
Effects of polarization and resolution on SAR ATR   总被引:3,自引:0,他引:3  
Lincoln Laboratory is investigating the detection and classification of stationary ground targets using high resolution, fully polarimetric, synthetic aperture radar (SAR) imagery. A study is summarized in which data collected by the Lincoln Laboratory 33 GHz SAR were used to perform a comprehensive comparison of automatic target recognition (ATR) performance for several polarization/resolution combinations. The Lincoln Laboratory baseline ATR algorithm suite was used, and was optimized for each polarization/resolution case. Both the HH polarization alone and the optimal combination of HH, HV, and VV were evaluated; the resolutions evaluated were 1 ft/spl times/1 ft and 1 m/spl times/1 m. The data set used for this study contained approximately 74 km/sup 2/ of clutter (56 km/sup 2/ of mixed clutter plus 18 km/sup 2/ of highly cultural clutter) and 136 tactical target images (divided equally between tanks and howitzers).  相似文献   
2.
Performance of 10- and 20-target MSE classifiers   总被引:2,自引:0,他引:2  
MIT Lincoln Laboratory is responsible for developing the ATR (automatic target recognition) system for the DARPA-sponsored SAIP program; the baseline ATR system recognizes 10 GOB (ground order of battle) targets; the enhanced version of SAIP requires the ATR system to recognize 20 GOB targets. This paper presents ATR performance results for 10- and 20-target mean square error (MSE) classifiers using high-resolution SAR (synthetic aperture radar) imagery.  相似文献   
3.
Automatic target recognition using enhanced resolution SAR data   总被引:1,自引:0,他引:1  
Using advanced technology, a new automatic target recognition (ATR) system has been developed that provides significantly improved target recognition performance compared with ATR systems that use conventional synthetic aperture radar (SAR) image-processing techniques. This significant improvement in target recognition performance is achieved by using a new superresolution image-processing technique that enhances SAR image resolution (and image quality) prior to performing target recognition. A computationally efficient two-level implementation of a template-based classifier is used to perform target recognition. The improvement in target recognition performance achieved using superresolution image processing in this new ATR system is quantified  相似文献   
4.
In this paper, we examine three different target detection techniques (including a family of two-dimensional adaptive filters) applied to FOPEN data collected by a UHF foliage penetration radar  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号