首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
航空   2篇
航天   1篇
  2007年   1篇
  2001年   1篇
  1994年   1篇
排序方式: 共有3条查询结果,搜索用时 15 毫秒
1
1.
The Wave Experiment, F4, on the Swedish/German satelliteFreja, is designed to measure the electric wave fields up to 4 MHz, the magnetic wave fields up to 16 kHz and the plasma density and its relative variations up to 2 kHz. Six wave signals and four density probe signals can be measured simultaneously. The wave forms of all signals are transmitted to ground without any analysis onboard. The limited TM allocation does not allow continuous sampling of the wave signals, so normally the measurements are made in snapshots of various lengths dependent on sampling frequency, etc. Continuous sampling can be made for shorter time periods by using a 6 Mbyte memory as a buffer.  相似文献   
2.
In order to meet the growing demand for high performance C- and Ku-Band services in the Americas, INTELSAT contracted with Astrium in February 2000 to procure a high capacity communications spacecraft for its 310°E operational location. The spacecraft platform is based on Astrium's next generation platform, the Eurostar 3000. Several new technologies such as integrated Data Handling System, Plasma Propulsion System, etc. are integral features of this platform. The communication payload comprises 36 C-Band and 20 high power Ku-Band transponders. The beam coverages are tailored for the 310°E orbital location and are implemented using a hybrid shaped antenna design approach, where multiple C-Band coverages are generated from a single shaped reflector utilizing a pair of Tx/Rx feed horns for each coverage. The Ku-Band coverages are generated by the classical dual Gregorian shaped reflector antenna design approach. With a total dry mass on the order of 2650 kg and a separated launch mass of 5400 kg, the spacecraft is compatible with most of the available launch vehicles providing mission life of greater than 13 years. The paper will provide technical details of the spacecraft.  相似文献   
3.
The Rosetta dual Langmuir probe instrument, LAP, utilizes the multiple powers of a pair of spherical Langmuir probes for measurements of basic plasma parameters with the aim of providing detailed knowledge of the outgassing, ionization, and subsequent plasma processes around the Rosetta target comet. The fundamental plasma properties to be studied are the plasma density, the electron temperature, and the plasma flow velocity. However, study of electric fields up to 8 kHz, plasma density fluctuations, spacecraft potential, integrated UV flux, and dust impacts is also possible. LAP is fully integrated in the Rosetta Plasma Consortium (RPC), the instruments of which together provide a comprehensive characterization of the cometary plasma. The LAP Team is listed in Table III.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号