首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
航空   6篇
航天技术   1篇
  2011年   2篇
  2010年   1篇
  2009年   1篇
  1996年   1篇
  1994年   1篇
  1978年   1篇
排序方式: 共有7条查询结果,搜索用时 15 毫秒
1
1.
The instruments on the Dawn spacecraft are exceptionally well suited to characterize and map the surface composition of Vesta in an integrated manner. These include a framing camera with multispectral capabilities, a high spectral resolution near-infrared imaging spectrometer, and a gamma-ray and neutron spectrometer. Three examples of issues addressed at Vesta are: (1) What is the composition of Vesta??s interior and differentiation state as exposed by the Great South Crater? (2) How has space weathering affected Vesta, both globally and at a local scale? and (3) Are volatiles or hydrated material present on Vesta??s surface? We predict that Dawn finds many surprises, such as an olivine-bearing mantle exposed near the south-pole, a weakly or un-weathered surface that has been relatively recently resurfaced, and a very thin layer of surficial volatiles derived from interaction with the solar wind.  相似文献   
2.
Ceres appears likely to be differentiated and to have experienced planetary evolution processes. This conclusion is based on current geophysical observations and thermodynamic modeling of Ceres?? evolution. This makes Ceres similar to a small planet, and in fact it is thought to represent a class of objects from which the inner planets formed. Verification of Ceres?? state and understanding of the many steps in achieving it remains a major goal. The Dawn spacecraft and its instrument package are on a mission to observe Ceres from orbit. Observations and potential results are suggested here, based on number of science questions.  相似文献   
3.
This paper presents brief profiles of 19 airborne hyperspectral sensor systems currently or nearly available for data acquisition. These systems represent various design concepts and innovations in hyperspectral information collection technology. A number of companies now have the ability to acquire data from these systems. As the scientific and commercial communities become aware of hyperspectral imaging data acquisition opportunities, more applications for this type of data will be investigated and implemented  相似文献   
4.
The High Resolution Stereo Camera (HRSC) onboard the Mars Express spacecraft in orbit about Mars has four detector channels dedicated to produce images in four spectral channels. Utilizing these spectrophotometric data requires understanding the instrument radiometric calibration and other photometric properties of the data. We present here some results of our investigation into the HRSC color data characteristics. This covers comparison of HRSC measurements with those of telescopes and the Observatoire pour la Minéralogie, l’Eau, les Glaces et l’Activité (OMEGA) instrument, also on Mars Express. We also investigate the dependence of HRSC Color measurements on solar phase angle and altitude of the Mars surface. These results confirm and extend our earlier findings [McCord, T.B., Adams, J.B., Bellucci, G., Combe, J.-Ph., Hansen, G., Hoffman, H., Jaumann, R., Lumme, K., Neukum, G., Pinet, P., Poulet, F., the HRSC Co-I Team, The Mars Express high Resolution Stereo Camera spectrophotometric data: characteristics and science analysis. J. Geophys. Res. 112, E6, 2007.]. A basic finding from our study is that there are nearly constant offsets between the I/F value derived from the HRSC data and those determined from OMEGA and groundbased telescope measurements, especially in the HRSC red bandpass. These offsets are nearly independent of solar phase angle and Mars surface altitude but are considerably larger for the one comparison at Phobos we were able to make. Several hypotheses could explain these effects: atmospheric scattering, surface photometric effects, shift of the spatial registration or calibration. All these possibilities were investigated.  相似文献   
5.
Much of our knowledge of planetary surface composition is derived from remote sensing over the ultraviolet through infrared wavelength ranges. Telescopic observations and, in the past few decades, spacecraft mission observations have led to the discovery of many surface materials, from rock-forming minerals to water ice to exotic volatiles and organic compounds. Identifying surface materials and mapping their distributions allows us to constrain interior processes such as cryovolcanism and aqueous geochemistry. The recent progress in understanding of icy satellite surface composition has been aided by the evolving capabilities of spacecraft missions, advances in detector technology, and laboratory studies of candidate surface compounds. Pioneers 10 and 11, Voyagers I and II, Galileo, Cassini and the New Horizons mission have all made significant contributions. Dalton (Space Sci. Rev., 2010, this issue) summarizes the major constituents found or inferred to exist on the surfaces of the icy satellites (cf. Table 1 from Dalton, Space Sci. Rev., 2010, this issue), and the spectral coverage and resolution of many of the spacecraft instruments that have revolutionized our understanding (cf. Table 2 from Dalton, Space Sci. Rev., 2010, this issue). While much has been gained from these missions, telescopic observations also continue to provide important constraints on surface compositions, especially for those bodies that have not yet been visited by spacecraft, such as Kuiper Belt Objects (KBOs), trans-Neptunian Objects (TNOs), Centaurs, the classical planet Pluto and its moon, Charon. In this chapter, we will discuss the major satellites of the outer solar system, the materials believed to make up their surfaces, and the history of some of these discoveries. Formation scenarios and subsequent evolution will be described, with particular attention to the processes that drive surface chemistry and exchange with interiors. Major similarities and differences between the satellites are discussed, with an eye toward elucidating processes operating throughout the outer solar system. Finally we discuss the outermost satellites and other bodies, and summarize knowledge of their composition. Much of this review is likely to change in the near future with ongoing and planned outer planet missions, adding to the sense of excitement and discovery associated with our exploration of our planetary neighborhood.  相似文献   
6.
Bren.  RJ 《航空制造技术》1996,(4):46-47
用分级淬火油来控制工件变形好富顿国际公司R.J.BRENNAN分级淬火油这个名词是1942年首先提出来的。它是指将钢件由奥氏体状态放到温度比Ms略高一点的介质中进行淬火。钢件放在其中的时间恰好使各部分温度平衡,随后放在空气中冷却,从而减少表面和芯部转...  相似文献   
7.
The interpretation of diagnostic parameters in the spectral reflectance data for asteroids provides a means of characterizing the mineralogy and petrology of asteroid surface materials. An interpretive technique based on a quantitative understanding of the functional relationship between the optical properties of a mineral assemblage and its mineralogy, petrology and chemistry can provide a considerably more sophisticated characterization of a surface material than any matching or classification technique for those objects bright enough to allow spectral reflectance measurements. Albedos derived from radiometry and polarization data for individual asteroids can be used with spectral data to establish the spectral albedo, to define the optical density of the surface material and, in general, to constrain mineralogical interpretations.Mineral assemblages analogous to most meteorite types, with the exception of ordinary chondritic assemblages, have been found as surface materials of Main Belt asteroids. C1- and C2-like assemblages (unleached, oxidized meteoritic clay minerals plus opaques such as carbon) dominate the population (80%) throughout the Belt, especially in the outer Belt. A smaller population of asteroids exhibit surface materials similar to C3 (CO, CV) meteoritic assemblages (olivine plus opaque, probably carbon) and are also distributed throughout the Belt. The relative size (diameter) distributions for these two populations of objects are consistent with an origin by sequential accretion from a cooling nebula (C2 as surface layers, C3 as interior layers or cores). Based on information from meteoritic analogues and on qualitative models for the behavior of these materials during a heating episode, it seems unlikely that these C2- and C3-like asteroidal bodies have experienced any significant post-accretionary heating event either near surface or in the deep interior.The majority of remaining studied asteroids (20) of 65 asteroids exhibit spectral reflectance curves dominated by the presence of metallic nickel-iron in their surface materials. These objects are most probably the several end products of an intense thermal event leading to the melting and differentiating of their protobodies. These thermalized bodies are concentrated toward the inner part of the Asteroid Belt but exist throughout the Belt.The size of the proto-asteroid has apparently exercised control over the post-accretionary thermal history of these bodies. The available evidence indicates that all asteroids larger than about 450 km in (present) diameter have undergone a significant heating episode since their formation. The post-accretionary thermal history of the asteroidal parent bodies was apparently affected by both distance from the Sun and body size.The C2-like materials which dominate the main asteroid belt population appear to be relatively rare on earth-approaching asteroids. This suggests that most of these Apollo-Amor objects are not randomly derived from the main belt, but (a) may derive from a single event in recent time (107 yr), (b) may derive from a favorably situated source body, (c) may derive from a particular, compositionally anomalous region of the belt, or (d) may derive from an alternate source (e.g. comets).  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号