首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
航空   2篇
航天技术   4篇
航天   1篇
  2008年   4篇
  2007年   1篇
  2002年   1篇
  1995年   1篇
排序方式: 共有7条查询结果,搜索用时 15 毫秒
1
1.
2.
We have performed a detailed Monte-Carlo (MC) simulation for the Advanced Thin Ionization Calorimeter (ATIC) detector using the MC code FLUKA-2005 which is capable of simulating particles up to 10 PeV. The ATIC detector has completed two successful balloon flights from McMurdo, Antarctica lasting a total of more than 35 days. ATIC is designed as a multiple, long duration balloon flight, investigation of the cosmic ray spectra from below 50 GeV to near 100 TeV total energy; using a fully active Bismuth Germanate (BGO) calorimeter. It is equipped with a large mosaic of silicon detector pixels capable of charge identification, and, for particle tracking, three projective layers of xy scintillator hodoscopes, located above, in the middle and below a 0.75 nuclear interaction length graphite target. Our simulations are part of an analysis package of both nuclear (A) and energy dependences for different nuclei interacting in the ATIC detector. The MC simulates the response of different components of the detector such as the Si-matrix, the scintillator hodoscopes and the BGO calorimeter to various nuclei. We present comparisons of the FLUKA-2005 MC calculations with GEANT calculations and with the ATIC CERN data.  相似文献   
3.
The Advanced Thin Ionization Calorimeter (ATIC) Balloon Experiment had a successful test flight and a science flight in 2000–01 and 2002–03 and an unsuccessful launch in 2005–06 from McMurdo, Antarctica, returning 16 and 19 days of flight data. ATIC is designed to measure the spectra of cosmic rays (protons to iron). The instrument is composed of a Silicon matrix detector followed by a carbon target interleaved with scintillator tracking layers and a segmented BGO calorimeter composed of 320 individual crystals totaling 18 radiation lengths to determine the particle energy. BGO (Bismuth Germanate) is an inorganic scintillation crystal and its light output depends not only on the energy deposited by particles but also on the temperature of the crystal. The temperature of balloon instruments during flight is not constant due to sun angle variations as well as differences in albedo from the ground. The change in output for a given energy deposit in the crystals in response to temperature variations was determined.  相似文献   
4.
The Advanced Thin Ionization Calorimeter (ATIC) experiment is designed to investigate the charge composition and energy spectra of primary cosmic rays over the energy range from about 1011 to 1014 eV during Long Duration Balloon (LDB) flights from McMurdo, Antarctica. Currently, analysis from the ATIC-1 test flight and ATIC-2 science flight is underway and preparation for a second science flight is in progress. Charge identification of the incident cosmic ray is accomplished, primarily, by a pixilated Silicon Matrix detector located at the very top of the instrument. While it has been shown that the Silicon Matrix detector provides good charge identification even in the presence of electromagnetic shower backscatter from the calorimeter, the detector only measures the charge once. In this paper, we examine use of the top scintillator hodoscope detector to provide a second measure of the cosmic ray charge and, thus, improve the ATIC charge identification.  相似文献   
5.
The Advanced Thin Ionization Calorimeter (ATIC) experiment is designed for high energy cosmic ray ion detection. The possibility to identify high energy primary cosmic ray electrons in the presence of the ‘background’ of cosmic ray protons has been studied by simulating nuclear-electromagnetic cascade showers using the FLUKA Monte Carlo simulation code. The ATIC design, consisting of a graphite target and an energy detection device, a totally active calorimeter built up of 2.5 cm × 2.5 cm × 25.0 cm BGO scintillator bars, gives sufficient information to distinguish electrons from protons. While identifying about 80% of electrons as such, only about 2 in 10,000 protons (@ 150 GeV) will mimic electrons. In September of 1999 ATIC was exposed to high-energy electron and proton beams at the CERN H2 beam line, and this data confirmed the electron detection capabilities of ATIC. From 2000-12-28 to 2001-01-13 ATIC was flown as a long duration balloon test flight from McMurdo, Antarctica, recording over 360 h of data and allowing electron separation to be confirmed in the flight data. In addition, ATIC electron detection capabilities can be checked by atmospheric gamma-ray observations.  相似文献   
6.
Thielemann  F.-K.  Hauser  P.  Kolbe  E.  Martinez-Pinedo  G.  Panov  I.  Rauscher  T.  Kratz  K.-L.  Pfeiffer  B.  Rosswog  S.  Liebendörfer  M.  Mezzacappa  A. 《Space Science Reviews》2002,100(1-4):277-296
The age of the universe, measured from the Big Bang to the present, is at the focus of cosmology. Its determination relies, however, on the use of stellar objects or their products. Stellar explosions, like type Ia supernovae serve as standard(izable) candles to measure the expansion of the universe. Hertzsprung––Russell diagrams of globular clusters can determine the age of such clusters and thus are lower limits of the age of the galaxy and therefore also the universe. Some nuclear isotopes with half–lives comparable to the age of galaxies (and the universe) can serve as clocks (chronometers) for the duration of nucleosynthesis. The isotopes 238U and 232Th with half–lives of 4.5×109 and 1.4×1010 yr, decaying via alpha decay chains to Pb isotopes, are well suited to serve this purpose. They are products of the same nucleosynthesis process, the r-process. Therefore, the present paper aims at understanding the necessary environment conditions in the (stellar) production sites, the nuclear physics involved, the observational constraints for r-process nucleosynthesis, the results from nucleocosmochronology, and the remaining challenges and uncertainties which need to be overcome for a full understanding of the nature of the r-process.  相似文献   
7.
The Konus-W experiment to be flown on board the GGS-Wind spacecraft is designed to observe gamma-ray bursts and solar flares with moderate spectral and high time resolution. Two large scintillators are used to provide omnidirectional sensitivity. The primary scientific objectives are the study of the continuum energy spectra and spectral features of these events in the energy range of 10 keV to 10 MeV, as well as their time histories in soft, medium, and hard energy bands, with a time resolution to 2 ms.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号