首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   151篇
  免费   0篇
  国内免费   1篇
航空   105篇
航天技术   32篇
航天   15篇
  2021年   1篇
  2015年   1篇
  2014年   2篇
  2013年   3篇
  2012年   2篇
  2011年   5篇
  2010年   4篇
  2009年   10篇
  2008年   8篇
  2007年   4篇
  2006年   2篇
  2004年   4篇
  2003年   2篇
  2002年   4篇
  2001年   4篇
  2000年   2篇
  1999年   1篇
  1998年   6篇
  1997年   7篇
  1996年   5篇
  1995年   10篇
  1994年   4篇
  1993年   2篇
  1992年   6篇
  1991年   10篇
  1990年   7篇
  1989年   3篇
  1988年   7篇
  1987年   2篇
  1986年   1篇
  1985年   6篇
  1984年   1篇
  1983年   1篇
  1982年   2篇
  1980年   1篇
  1979年   2篇
  1978年   1篇
  1976年   1篇
  1975年   1篇
  1973年   1篇
  1972年   3篇
  1966年   1篇
  1963年   2篇
排序方式: 共有152条查询结果,搜索用时 15 毫秒
1.
Significant advances in and applications of battery technology are outlined. Factors driving future developments are identified  相似文献   
2.
Intersecting spheres are useful in the design of pressure vessels for weight limited situations as in the case of space or ocean applications. This paper treats the general problem of N intersecting spheres demonstrating that mass reduction can be achieved in relation to the single sphere that encloses the same internal volume. It is shown that this reduction approaches asymptotically the value of 39.5%.  相似文献   
3.
The designs of cold space telescopes, cryogenic and radiatively cooled, are similar in most elements and both benefit from orbits distant from the Earth. In particular such orbits allow the anti-sunward side of radiatively-cooled spacecraft to be used to provide large cooling radiators for the individual radiation shields. Designs incorporating these features have predictedT tel near 20 K. The attainability of such temperatures is supported by limited practical experience (IRAS, COBE). Supplementary cooling systems (cryogens, mechanical coolers) can be advantageously combined with radiative cooling in hybrid designs to provide robustness against deterioration and yet lower temperatures for detectors, instruments, and even the whole telescope. The possibility of such major additional gains is illustrated by the Very Cold Telescope option under study forEdison, which should offerT tel5 K for a little extra mechanical cooling capacity.  相似文献   
4.
A survey of current knowledge about Jupiter, Saturn, Uranus, Neptune, Pluto, and their satellites is presented. The best available numerical values are given for physical parameters, including orbital and body properties, atmospheric composition and structure, and photometric parameters. The more acceptable current theories of these bodies are outlined with thorough referencing offering access to the details. The survey attempts to cover the literature through May 1, 1972. Prepared Under Contract No. NAS7-100 National Aeronautics and Space Administration.  相似文献   
5.
The problem with aviation COTS   总被引:1,自引:0,他引:1  
Commercial Off the Shelf (COTS) has become a byword for acquisition reform, but there are significant risks associated with the use of COTS products in military systems. These risks are especially acute for aviation systems. This paper explains how COTS can negatively affect military acquisitions and gives ideas on how to plan and resolve COTS caused problems  相似文献   
6.
Data from ARCS rocket ion beam injection experiments will be primarily discussed in this paper. There are three results from this series of active experiments that are of particular interest in space plasma physics. These are the transverse acceleration of ambient ions in the large beam volume, the scattering of beam ions near the release payload, and the possible acceleration of electrons very close to the plasma generator which produce intense high frequency waves. The ability of 100 ma ion beam injections into the upper E and F regions of the ionosphere to produce these phenomena appear to be related solely to the process by which the plasma release payload and the ion beam are neutralized. Since the electrons in the plasma release do not convect with the plasma ions, the neutralization of both the payload and beam must be accomplished by large field-aligned currents (milliamperes/square meter) which are very unstable to wave growth of various modes. Future work will concentrate on the wave production and wave-particle interactions that produce the plasma/energetic particle effects discussed in this paper and which have direct application to natural phenomena in the upper ionosphere and magnetosphere.  相似文献   
7.
The Magnetic Field of Mercury   总被引:1,自引:0,他引:1  
The magnetic field strength of Mercury at the planet’s surface is approximately 1% that of Earth’s surface field. This comparatively low field strength presents a number of challenges, both theoretically to understand how it is generated and observationally to distinguish the internal field from that due to the solar wind interaction. Conversely, the small field also means that Mercury offers an important opportunity to advance our understanding both of planetary magnetic field generation and magnetosphere-solar wind interactions. The observations from the Mariner 10 magnetometer in 1974 and 1975, and the MESSENGER Magnetometer and plasma instruments during the probe’s first two flybys of Mercury on 14 January and 6 October 2008, provide the basis for our current knowledge of the internal field. The external field arising from the interaction of the magnetosphere with the solar wind is more prominent near Mercury than for any other magnetized planet in the Solar System, and particular attention is therefore paid to indications in the observations of deficiencies in our understanding of the external field. The second MESSENGER flyby occurred over the opposite hemisphere from the other flybys, and these newest data constrain the tilt of the planetary moment from the planet’s spin axis to be less than 5°. Considered as a dipole field, the moment is in the range 240 to 270 nT-R M 3 , where R M is Mercury’s radius. Multipole solutions for the planetary field yield a smaller dipole term, 180 to 220 nT-R M 3 , and higher-order terms that together yield an equatorial surface field from 250 to 290 nT. From the spatial distribution of the fit residuals, the equatorial data are seen to reflect a weaker northward field and a strongly radial field, neither of which can be explained by a centered-dipole matched to the field measured near the pole by Mariner 10. This disparity is a major factor controlling the higher-order terms in the multipole solutions. The residuals are not largest close to the planet, and when considered in magnetospheric coordinates the residuals indicate the presence of a cross-tail current extending to within 0.5R M altitude on the nightside. A near-tail current with a density of 0.1 μA/m2 could account for the low field intensities recorded near the equator. In addition, the MESSENGER flybys include the first plasma observations from Mercury and demonstrate that solar wind plasma is present at low altitudes, below 500 km. Although we can be confident in the dipole-only moment estimates, the data in hand remain subject to ambiguities for distinguishing internal from external contributions. The anticipated observations from orbit at Mercury, first from MESSENGER beginning in March 2011 and later from the dual-spacecraft BepiColombo mission, will be essential to elucidate the higher-order structure in the magnetic field of Mercury that will reveal the telltale signatures of the physics responsible for its generation.  相似文献   
8.
Nonbinary m-sequences (maximal length sequences) for spread-spectrum communication systems that have a two-level autocorrelation are presented. The autocorrelation function of an m -sequence over the Galois field of q elements GF(q), where q=pk, for p a prime and k an integer greater than 1, is developed and shown to be bilevel when the elements of GF(q) are expressed as elements of a vector space over the pth roots of unity  相似文献   
9.
SWE,a comprehensive plasma instrument for the WIND spacecraft   总被引:1,自引:0,他引:1  
The Solar Wind Experiment (SWE) on the WIND spacecraft is a comprehensive, integrated set of sensors which is designed to investigate outstanding problems in solar wind physics. It consists of two Faraday cup (FC) sensors; a vector electron and ion spectrometer (VEIS); a strahl sensor, which is especially configured to study the electron strahl close to the magnetic field direction; and an on-board calibration system. The energy/charge range of the Faraday cups is 150 V to 8 kV, and that of the VEIS is 7 V to 24.8 kV. The time resolution depends on the operational mode used, but can be of the order of a few seconds for 3-D measurements. Key parameters which broadly characterize the solar wind positive ion velocity distribution function will be made available rapidly from the GGS Central Data Handling Facility.  相似文献   
10.
The MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft, launched on August 3, 2004, is nearing the halfway point on its voyage to become the first probe to orbit the planet Mercury. The mission, spacecraft, and payload are designed to answer six fundamental questions regarding the innermost planet: (1) What planetary formational processes led to Mercury’s high ratio of metal to silicate? (2) What is the geological history of Mercury? (3) What are the nature and origin of Mercury’s magnetic field? (4) What are the structure and state of Mercury’s core? (5) What are the radar-reflective materials at Mercury’s poles? (6) What are the important volatile species and their sources and sinks near Mercury? The mission has focused to date on commissioning the spacecraft and science payload as well as planning for flyby and orbital operations. The second Venus flyby (June 2007) will complete final rehearsals for the Mercury flyby operations in January and October 2008 and September 2009. Those flybys will provide opportunities to image the hemisphere of the planet not seen by Mariner 10, obtain high-resolution spectral observations with which to map surface mineralogy and assay the exosphere, and carry out an exploration of the magnetic field and energetic particle distribution in the near-Mercury environment. The orbital phase, beginning on March 18, 2011, is a one-year-long, near-polar-orbital observational campaign that will address all mission goals. The orbital phase will complete global imaging, yield detailed surface compositional and topographic data over the northern hemisphere, determine the geometry of Mercury’s internal magnetic field and magnetosphere, ascertain the radius and physical state of Mercury’s outer core, assess the nature of Mercury’s polar deposits, and inventory exospheric neutrals and magnetospheric charged particle species over a range of dynamic conditions. Answering the questions that have guided the MESSENGER mission will expand our understanding of the formation and evolution of the terrestrial planets as a family.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号