首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
航空   3篇
  1999年   1篇
  1988年   1篇
  1981年   1篇
排序方式: 共有3条查询结果,搜索用时 15 毫秒
1
1.
Mismatched Filtering of Sonar Signals   总被引:1,自引:0,他引:1  
A replica correlator (matched filter) is an optimum processor for a receiver employing a pulse of continuous wave (CW) signal in a white Gaussian noise background. In an active sonar, however, when the target of interest has low Doppler shift and is embedded in a high reverberation background, this is not so. High sidelobes of the correlator frequency response pass a significant portion of the signal contained in the mainlobe of the reverberation spectrum. In order to reduce the sidelobes of the correlator output spectrum and at the same time keep the increase in its 3 dB bandwidth to a small amount, we propose lengthening of the replica of the transmitted signal and weighting it by a Kaiser window. It is demonstrated that by extending the weighted replica by 50 percent compared with the transmitted signal, it is possible to reduce the sidelobe levels to at least 40 dB below the mainlobe peak, with the concomitant increase of the 3 dB band-width by less than 5 percent. The degradation in signal-to-noise ratio (SNR) performance for such a ?mismatched? filter receiver with respect to the matched filter is less than 1.5 dB.  相似文献   
2.
If modern airborne radar systems are to function properly, the radar antenna radiation patterns must meet certain specifications. Until recently, most radar antennas were designed and tested in a clean antenna environment, i.e., there is no near field scattering from host structures or radome effects. However, these higher order effects are the matter of increasing concern with added performance demands in the ever-increasing jammer and clutter interference environments. We investigated the capabilities and limitations of currently available analysis techniques and computer codes for installed performance of airborne radar antenna systems. Then we developed an extended ray-optical technique that could predict total installed performance of airborne radar antenna systems, i.e., the near field scattering from aircraft structures and radome effects. The new analysis technique utilized a ray-tracing method in both airframe and radome simulation. Thus, it can efficiently predict the total installed performance of large radar antenna systems on an aircraft structure  相似文献   
3.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号