首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
航空   2篇
航天技术   3篇
航天   2篇
  2018年   2篇
  2009年   1篇
  2006年   2篇
  2004年   1篇
  1992年   1篇
排序方式: 共有7条查询结果,搜索用时 15 毫秒
1
1.
Space Science Reviews - Time measured by an ideal clock crucially depends on the gravitational potential and velocity of the clock according to general relativity. Technological advances in...  相似文献   
2.
3.
Based on the available measurement data, simulations of radiation conditions during spacecraft flights in the interplanetary space and in the Earth's and Jupiter's radiation belts has been carried out. The > or = 10 MeV and > or = 30 MeV solar flare proton fluence forecast has been proposed for Cycle 22. Radiation conditions due to both magnetospheric electrons and protons and to solar flare protons, magnetic rigidity cutoff being taken into account, have been evaluated on spacecraft trajectories in the Earth's and Jupiter's magnetospheres.  相似文献   
4.
Considering the possibility of outgassing from some localized sources on Mars, we have developed a one-dimensional photochemical model that includes methane (CH4), sulfur dioxide (SO2) and hydrogen sulfide (H2S). Halogens were considered but were found to have no significant impact on the martian atmospheric chemistry. We find that the introduction of methane into the martian atmosphere results in the formation of mainly formaldehyde (CH2O), methyl alcohol (CH3OH) and ethane (C2H6), whereas the introduction of the sulfur species produces mainly sulfur monoxide (SO) and sulfuric acid (H2SO4). Depending upon the flux of the outgassed molecules from possible hot spots, some of these species and the resulting new molecules may be detectable locally, either by remote sensing (e.g., with the Planetary Fourier Spectrometer on Mars Express) or in situ measurements.  相似文献   
5.
Clouds and Hazes of Venus   总被引:1,自引:0,他引:1  
More than three decades have passed since the publication of the last review of the Venus clouds and hazes. The paper published in 1983 in the Venus book summarized the discoveries and findings of the US Pioneer Venus and a series of Soviet Venera spacecraft (Esposito et al. in Venus, p. 484, 1983). Due to the emphasis on in-situ investigations from descent probes, those missions established the basic features of the Venus cloud system, its vertical structure, composition and microphysical properties. Since then, significant progress in understanding of the Venus clouds has been achieved due to exploitation of new observation techniques onboard Galileo and Messenger flyby spacecraft and Venus Express and Akatsuki orbiters. They included detailed investigation of the mesospheric hazes in solar and stellar occultation geometry applied in the broad spectral range from UV to thermal IR. Imaging spectroscopy in the near-IR transparency “windows” on the night side opened a new and very effective way of sounding the deep atmosphere. This technique together with near-simultaneous UV imaging enabled comprehensive study of the cloud morphology from the cloud top to its deep layers. Venus Express operated from April 2006 until December 2014 and provided a continuous data set characterizing Venus clouds and hazes over a time span of almost 14 Venus years thus enabling a detailed study of temporal and spatial variability. The polar orbit of Venus Express allowed complete latitudinal coverage. These studies are being complemented by JAXA Akatsuki orbiter that began observations in May 2016. This paper reviews the current status of our knowledge of the Venus cloud system focusing mainly on the results acquired after the Venera, Pioneer Venus and Vega missions.  相似文献   
6.
We discuss the results of measurements made with the Planetary Fourier Spectrometer (PFS) onboard the Mars Express spacecraft. The data were obtained in the beginning of the mission and correspond to the end of summer in the southern hemisphere of Mars (L s ~ 340°). Three orbits are considered, two of which passed through volcanoes Olympus and Ascraeus Mons (the height above the surface is about +20 km), while the third orbit intersects lowland Hellas (?7 km). The influence of the relief on the properties of the aerosol observed is demonstrated: clouds of water ice with a visual optical thickness of 0.1–0.5 were observed above volcanoes, while only dust was found during the observations (close in time) along the orbit passing through Hellas in low and middle latitudes. This dust is homogeneously mixed with gas and has a reduced optical thickness of 0.25±0.05 (at v = 1100 cm?1). In addition to orographic clouds, ice clouds were observed in this season in the northern polar region. The clouds seen in the images obtained simultaneously by the mapping spectrometer OMEGA confirm the PFS results. Temperature inversion is discovered in the north polar hood below the level 1 mbar with a temperature maximum at about 0.6 mbar. This inversion is associated with descending movements in the Hadley cell.  相似文献   
7.
The infrared spectrometry of Venus in the range 6–45 μm allows one to sound the middle atmosphere of Venus in the altitude range 55–100 km and its cloud layer. This experiment was carried out onboard the Soviet automatic interplanetary Venera-15 station, where the Fourier spectrometer for this spectral range was installed. The measurements have shown that the main component of the cloud layer at all measured latitudes in the northern hemisphere is concentrated sulfuric acid (75–85%). The vertical profiles of temperature and aerosol were reconstructed in a self-consistent manner: the three-dimensional fields of temperature and zonal wind in the altitude range 55–100 km and aerosol at altitudes 55–70 km have been obtained, as well as vertical SO2 profiles and H2O concentration in the upper cloud layer. The solar-related waves at isobaric levels in the fields of temperature, zonal wind, and aerosol were investigated. This experiment has shown the efficiency of the method for investigation of the Venusian atmosphere. The Planetary Fourier Spectrometer has the spectral interval 0.9–45 μm and a spectral resolution of 1.8 cm?1. It will allow one to sound the middle atmosphere (55–100 km) of Venus and its cloud layer on the dayside, as well as the lower atmosphere and the planetary surface on the night side.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号