首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
航空   6篇
航天   1篇
  2012年   1篇
  2007年   1篇
  2006年   1篇
  1999年   2篇
  1998年   1篇
  1978年   1篇
排序方式: 共有7条查询结果,搜索用时 15 毫秒
1
1.
Understanding properties of solar energetic particle (SEP) events associated with coronal mass ejections has been identified as a key problem in solar-terrestrial physics. Although recent CME shock acceleration models are highly promising, detailed agreement between theoretical predictions and observations has remained elusive. Recent observations from ACE have shown substantial enrichments in the abundances of 3He and He+ ions which are extremely rare in the thermal solar wind plasma. Consequently, these ions act as tracers of their source material, i.e., 3He ions are flare suprathermals and He+ ions are interstellar pickup ions. The average heavy ion composition also exhibits unsystematic differences when compared with the solar wind values, but correlates significantly with the ambient suprathermal material abundances. Taken together these results provide compelling evidence that CME-driven shocks draw their source material from the ubiquitous but largely unexplored suprathermal tail rather than from the more abundant solar wind peak. However, the suprathermal energy regime has many more contributors and exhibits much larger variability than the solar wind, and as such needs to be investigated more thoroughly. Answers to fundamental new questions regarding the preferred injection of the suprathermal ions, the spatial and temporal dependence of the various sources, and the causes of their variability and their effects on the SEP properties are needed to improve agreement between the simulations and observations.  相似文献   
2.
We discuss the structure and evolution of CIRs and their successors in the outer heliosphere. These structures undergo significant evolution as they are convected to greater heliocentric distances. A progression of different types of structure are observed at increasing distance from the Sun. Similar structures are observed at similar heliocentric distance at different portions of the solar cycle. CIRs and their successors are associated with many important physical processes in the outer heliosphere. We discuss the relationship between these structures and recurrent phenomena such as cosmic ray variations, and review some of the associated theoretical models on the role of corotating structures and global merged interaction regions (GMIRs) in global cosmic ray modulation. We also discuss some outstanding questions related to the origin of non-dispersive quasi-periodic particle enhancements associated with CIRs and their successors in the outer heliosphere. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
3.
It is now well established that both thunderclouds and lightning routinely emit x-rays and gamma-rays. These emissions appear over wide timescales, ranging from sub-microsecond bursts of x-rays associated with lightning leaders, to sub-millisecond bursts of gamma-rays seen in space called terrestrial gamma-ray flashes, to minute long glows from thunderclouds seen on the ground and in or near the cloud by aircraft and balloons. In particular, terrestrial gamma-ray flashes (TGFs), which are thought to be emitted by thunderclouds, are so bright that they sometimes saturate detectors on spacecraft hundreds of kilometers away. These TGFs also generate energetic secondary electrons and positrons that are detected by spacecraft in the inner magnetosphere. It is generally believed that these x-ray and gamma-ray emissions are generated, via bremsstrahlung, by energetic runaway electrons that are accelerated by electric fields in the atmosphere. In this paper, we review this newly emerging field of High-Energy Atmospheric Physics, including the production of runaway electrons, the production and propagation of energetic radiation, and the effects of both on atmospheric electrodynamics.  相似文献   
4.
The Ultra-Low-Energy Isotope Spectrometer (ULEIS) for the ACE spacecraft   总被引:1,自引:0,他引:1  
Mason  G.M.  Gold  R.E.  Krimigis  S.M.  Mazur  J.E.  Andrews  G.B.  Daley  K.A.  Dwyer  J.R.  Heuerman  K.F.  James  T.L.  Kennedy  M.J.  LeFevere  T.  Malcolm  H.  Tossman  B.  Walpole  P.H. 《Space Science Reviews》1998,86(1-4):409-448
The Ultra Low Energy Isotope Spectrometer (ULEIS) on the ACE spacecraft is an ultra high resolution mass spectrometer designed to measure particle composition and energy spectra of elements He-Ni with energies from ∼45 keV nucl−1 to a few MeV nucl−1. ULEIS will investigate particles accelerated in solar energetic particle events, interplanetary shocks, and at the solar wind termination shock. By determining energy spectra, mass composition, and their temporal variations in conjunction with other ACE instruments, ULEIS will greatly improve our knowledge of solar abundances, as well as other reservoirs such as the local interstellar medium. ULEIS is designed to combine the high sensitivity required to measure low particle fluxes, along with the capability to operate in the largest solar particle or interplanetary shock events. In addition to detailed information for individual ions, ULEIS features a wide range of count rates for different ions and energies that will allow accurate determination of particle fluxes and anisotropies over short (∼few minutes) time scales. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   
5.
This report emphasizes new observational aspects of CIR ions revealed by advanced instruments launched on the Ulysses, WIND, SOHO, and ACE spacecraft, and by the unique vantage point of Ulysses which carried out the first survey of Corotating Interaction Region (CIR) properties over a very wide range of heliolatitudes. With this more complete observational picture established, this review is the basis to consider the status of theoretical models on origin, injection, and acceleration of CIR particles reported by Scholer, Mann et al. (1999) in this volume. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
6.
Using high-resolution mass spectrometers on board the Advanced Composition Explorer (ACE), we surveyed the event-averaged ∼0.1–60 MeV/nuc heavy ion elemental composition in 64 large solar energetic particle (LSEP) events of cycle 23. Our results show the following: (1) The Fe/O ratio decreases with increasing energy up to ∼10 MeV/nuc in ∼92% of the events and up to ∼60 MeV/nuc in ∼64% of the events. (2) The rare isotope 3He is greatly enhanced over the corona or the solar wind values in 46% of the events. (3) The heavy ion abundances are not systematically organized by the ion’s M/Q ratio when compared with the solar wind values. (4) Heavy ion abundances from C–Fe exhibit systematic M/Q-dependent enhancements that are remarkably similar to those seen in 3He-rich SEP events and CME-driven interplanetary (IP) shock events. Taken together, these results confirm the role of shocks in energizing particles up to ∼60 MeV/nuc in the majority of large SEP events of cycle 23, but also show that the seed population is not dominated by ions originating from the ambient corona or the thermal solar wind, as previously believed. Rather, it appears that the source material for CME-associated large SEP events originates predominantly from a suprathermal population with a heavy ion enrichment pattern that is organized according to the ion’s mass-per-charge ratio. These new results indicate that current LSEP models must include the routine production of this dynamic suprathermal seed population as a critical pre-cursor to the CME shock acceleration process.  相似文献   
7.
The problem of the numerical modeling of unsteady flame propagation with large amounts of exothermic heat release has been addressed through the use of a model equation which contains many of the important nonlinearities and difficulties in the problem. The model equation has been solved for a significant variation in Damköhler number with a variety of conventional and new finite-difference procedures. One of the new procedures used was an adaptive grid method which places node points in the region of large temperature gradients where they are necessary for a proper simulation of the phenomena. This adaptive grid procedure does have significant advantages over conventional second and fourth order uniform grid methods for many aspects of the problem. It has been found that conventional methods with relatively few node points are inadequate for flames with high Damköhler number, because of the fact that too few nodes are located in the flame. Further refinement of the adaptive grid method seems feasible, but even in the present form it represents a significant improvement over conventional techniques.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号