首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   28篇
  免费   0篇
航空   12篇
航天技术   6篇
航天   10篇
  2018年   3篇
  2014年   3篇
  2013年   3篇
  2012年   2篇
  2011年   3篇
  2010年   2篇
  2009年   1篇
  2008年   1篇
  2007年   1篇
  2005年   2篇
  2003年   3篇
  2002年   2篇
  2000年   1篇
  1997年   1篇
排序方式: 共有28条查询结果,搜索用时 15 毫秒
1.
The fluxgate magnetometer experiment onboard the ROSETTA spacecraft aims to measure the magnetic field in the interaction region of the solar wind plasma with comet 67P/Churyumov-Gerasimenko. It consists of a system of two ultra light (about 28 g each ) triaxial fluxgate magnetometer sensors, mounted on the 1.5 m long spacecraft boom. The measurement range of each sensor is ±16384 nT with quantization steps of 31 pT. The magnetometer sensors are operated with a time resolution of up to 0.05 s, corresponding to a bandwidth of 0–10 Hz. This performance of the RPC-MAG sensors allows detailed analyses of magnetic field variations in the cometary environment. RPC-MAG furthermore is designed to study possible remnant magnetic fields of the nucleus, measurements which will be done in close cooperation with the ROSETTA lander magnetometer experiment ROMAP.  相似文献   
2.
3.
As the title suggests, the purpose of this chapter is to review the current status of numerical simulations of black hole accretion disks. This chapter focuses exclusively on global simulations of the accretion process within a few tens of gravitational radii of the black hole. Most of the simulations discussed are performed using general relativistic magnetohydrodynamic (MHD) schemes, although some mention is made of Newtonian radiation MHD simulations and smoothed particle hydrodynamics. The goal is to convey some of the exciting work that has been going on in the past few years and provide some speculation on future directions.  相似文献   
4.
The Solar Dynamo     
Observations relevant to current models of the solar dynamo are presented, with emphasis on the history of solar magnetic activity and on the location and nature of the solar tachocline. The problems encountered when direct numerical simulation is used to analyse the solar cycle are discussed, and recent progress is reviewed. Mean field dynamo theory is still the basis of most theories of the solar dynamo, so a discussion of its fundamental principles and its underlying assumptions is given. The role of magnetic helicity is discussed. Some of the most popular models based on mean field theory are reviewed briefly. Dynamo models based on severe truncations of the full MHD equations are discussed.  相似文献   
5.
采用多学科专业CAE工具LMS Virtual.Lab和LMS Imagine.Lab AMESim设计前缘缝翼,这不仅展示了不同物理领域的集成,还包括采用LMS Imagine.Lab AMESim构建的一维或称"集总参数"模型与采用LMS Virtual.Lab构建的三维模型的集成。  相似文献   
6.
随着民航业的不断发展,航空维修(MRO)企业面临着越来越多安全和守规方面的要求.MRO安全性一直是一个非常重要、复杂且极具挑战性的课题.以美国为例,数十年来FAA、航空公司和MRO企业一方面积极采取各种措施提高飞行安全性,但另一方面,威胁航空安全的事件却一再发生,比如最近美国西南航空公司、美国航空公司发生的一系列飞机停飞、航班取消事件.  相似文献   
7.
An assessment is presented of the probable magnitude of ocean signals causing aliasing in ocean bottom pressure measurements from the GRACE satellite mission. Even after modelling as much of the high frequency signal as possible, variability between 1 mbar (in quiet ocean regions) and 10 mbar (on some shelves) is likely to remain. Interpretation of the resulting retrievals will therefore rely on the facts that the satellite sampling will average the aliasing signal to some extent, and that the spatial patterns of aliased signal and true signal will be different. To this end, a theoretical argument is given, and supported by model diagnostics, suggesting that observable bottom pressure signals will be strongly constrained by the shape of the ocean floor. The modelled magnitudes offer the prospect of significant detectable signals and, while the model accuracy can be called into question, there are hints from Earth rotation and satellite orbit measurements that significant mass redistributions occur in the ocean. It seems certain that we will learn something new about the oceans from GRACE. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
8.
We have developed a rock grinding and polishing mechanism for in situ planetary exploration based on abrasive disks, called Grinding Rocks Into Thin Sections (GRITS). Performance characteristics and design considerations of GRITS are presented. GRITS was developed as part of a broader effort to develop an in situ automated rock thin section (ISARTS) instrument. The objective of IS-ARTS was to develop an instrument capable of producing petrographic rock thin sections on a planetary science spacecraft. GRITS may also be useful to other planetary science missions with in situ instruments in which rock surface preparation are necessary.  相似文献   
9.
A suite of three optical instruments has been developed to observe Comet 9P/Tempel 1, the impact of a dedicated impactor spacecraft, and the resulting crater formation for the Deep Impact mission. The high-resolution instrument (HRI) consists of an f/35 telescope with 10.5 m focal length, and a combined filtered CCD camera and IR spectrometer. The medium-resolution instrument (MRI) consists of an f/17.5 telescope with a 2.1 m focal length feeding a filtered CCD camera. The HRI and MRI are mounted on an instrument platform on the flyby spacecraft, along with the spacecraft star trackers and inertial reference unit. The third instrument is a simple unfiltered CCD camera with the same telescope as MRI, mounted within the impactor spacecraft. All three instruments use a Fairchild split-frame-transfer CCD with 1,024× 1,024 active pixels. The IR spectrometer is a two-prism (CaF2 and ZnSe) imaging spectrometer imaged on a Rockwell HAWAII-1R HgCdTe MWIR array. The CCDs and IR FPA are read out and digitized to 14 bits by a set of dedicated instrument electronics, one set per instrument. Each electronics box is controlled by a radiation-hard TSC695F microprocessor. Software running on the microprocessor executes imaging commands from a sequence engine on the spacecraft. Commands and telemetry are transmitted via a MIL-STD-1553 interface, while image data are transmitted to the spacecraft via a low-voltage differential signaling (LVDS) interface standard. The instruments are used as the science instruments and are used for the optical navigation of both spacecraft. This paper presents an overview of the instrument suite designs, functionality, calibration and operational considerations.  相似文献   
10.
Photosynthetic microbial mat communities were obtained from marine hypersaline saltern ponds, maintained in a greenhouse facility, and examined for the effects of salinity variations. Because these microbial mats are considered to be useful analogs of ancient marine communities, they offer insights about evolutionary events during the >3 billion year time interval wherein mats co-evolved with Earth's lithosphere and atmosphere. Although photosynthetic mats can be highly dynamic and exhibit extremely high activity, the mats in the present study have been maintained for >1 year with relatively minor changes. The major groups of microorganisms, as assayed using microscopic, genetic, and biomarker methodologies, are essentially the same as those in the original field samples. Field and greenhouse mats were similar with respect to rates of exchange of oxygen and dissolved inorganic carbon across the mat-water interface, both during the day and at night. Field and greenhouse mats exhibited similar rates of efflux of methane and hydrogen. Manipulations of salinity in the water overlying the mats produced changes in the community that strongly resemble those observed in the field. A collaboratory testbed and an array of automated features are being developed to support remote scientific experimentation with the assistance of intelligent software agents. This facility will permit teams of investigators the opportunity to explore ancient environmental conditions that are rare or absent today but that might have influenced the early evolution of these photosynthetic ecosystems.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号