首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21篇
  免费   0篇
航空   6篇
航天技术   13篇
航天   2篇
  2018年   1篇
  2015年   1篇
  2012年   1篇
  2003年   3篇
  2002年   1篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1995年   1篇
  1994年   1篇
  1985年   2篇
  1983年   2篇
  1981年   3篇
  1971年   2篇
排序方式: 共有21条查询结果,搜索用时 15 毫秒
1.
The Closed Equilibrated Biological Aquatic System (C.E.B.A.S.) Mini-Module, a Space Shuttle middeck locker payload which supports a variety of aquatic inhabitants (fish, snails, plants and bacteria) in an enclosed 8.6 L chamber, was tested for its biological stability in microgravity. The aquatic plant, Ceratophyllum demersum L., was critical for the vitality and functioning of this artificial mini-ecosystem. Its photosynthetic pigment concentrations were of interest due to their light harvesting and protective functions. "Post-flight" chlorophyll and carotenoid concentrations within Ceratophyllum apical segments were directly related to the quantities of light received in the experiments, with microgravity exposure (STS-89) failing to account for any significant deviation from ground control studies.  相似文献   
2.
The Closed Equilibrated Biological Aquatic System (C.E.B.A.S.) is an artificial aquatic ecosystem which contains teleost fishes, water snails, ammonia oxidizing bacteria and edible non-gravitropic water plants. It serves as a model for aquatic food production modules which are not seriously affected by microgravity and other space conditions. Its space flight version, the so-called C.E.B.A.S. MINI-MODULE was already successfully tested in the STS-89 and STS-90 (NEUROLAB) missions. It will be flown a third time in space with the STS-107 mission in January 2003. All results obtained so far in space indicate that the basic concept of the system is more than suitable to drive forward its development. The C.E.B.A.S. MINI-MODULE is located within a middeck locker with limited space for additional components. These technical limitations allow only some modifications which lead to a maximum experiment time span of 120 days which is not long enough for scientifically essential multi-generation-experiments. The first necessary step is the development of "harvesting devices" for the different organisms. In the limited space of the plant bioreactor a high biomass production leads to self-shadowing effects which results in an uncontrolled degradation and increased oxygen consumption by microorganisms which will endanger the fishes and snails. It was shown already that the latter reproduce excellently in space and that the reproductive functions of the fish species are not affected. Although the parent-offspring-cannibalism of the ovoviviparous fish species (Xiphophorus helleri) serves as a regulating factor in population dynamics an uncontrolled snail reproduction will also induce an increased oxygen consumption per se and a high ammonia concentration in the water. If harvesting locks can be handled by astronauts in, e. g., 4-week intervals their construction is not very difficult and basic technical solutions are already developed. The second problem is the feeding of the animals. Although C.E.B.A.S.-based aquaculture modules are designed to be closed food loop systems (edible herbivorous fish species and edible water plants) which are already verified on Earth this will not be possible in space without devices in which the animals are fed from a food storage. This has to be done at least once daily which would waste too much crew time when done by astronauts. So, the development of a reliable automated food dispenser has highest priority. Also in this case basic technical solutions are already elaborated. The paper gives a comprehensive overview of the proposed further C.E.B.A.S.-based development of longer-term duration aquatic food production modules.  相似文献   
3.
4.
Semi-empirical models are derived predominantly from satellite-borne observations. The nature of these observations restricts the applicability of the models mainly to the atmospheric regions sampled, i.e. the upper thermosphere. Current models are only capable of reproducing a zero-order approximation of the structure of the lower thermosphere. Based on selected examples, the progress in atmospheric research since CIRA-72 as well as the continuing deficiencies are demonstrated.  相似文献   
5.
For a better understanding of the processes which lead to the formation of planetesimals in the early solar nebula, we performed an extensive series of laboratory experiments. We find that the capture velocities in collisions between spherical grains are more than one order of magnitude higher than predicted by Chokshi et al (1993). In contrast, irregular grains have no capture threshold and can be better described by a sticking probability which is typically a few 10%, even for velocities exceeding 10 m/s. However, adhesion forces between spherical, micron-sized particles match the theoretical predictions very well, although contact areas and deformations are of the order of inter-atomic distances only. Aggregation experiments in rarefied turbulent gases reveal the fractal nature of dust aggregates. Mass distribution functions are bell-shaped. Similar behaviour can be found in aggregation experiments with sedimenting particles. Experiments on collision-induced aggregate compaction and fragmentation match the numerical simulations by Dominik and Tielens (1997) very well if revised experimental values of the break-up energy (from our impact experiments) and the rolling-friction force (from our AFM measurements on particle chains) are used. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   
6.
After 25 years of laboratory research on protoplanetary dust agglomeration, a consistent picture of the various processes that involve colliding dust aggregates has emerged. Besides sticking, bouncing and fragmentation, other effects, like, e.g., erosion or mass transfer, have now been extensively studied. Coagulation simulations consistently show that \(\upmu\mbox{m}\)-sized dust grains can grow to mm- to cm-sized aggregates before they encounter the bouncing barrier, whereas sub-\(\upmu\mbox{m}\)-sized water-ice particles can directly grow to planetesimal sizes. For siliceous materials, other processes have to be responsible for turning the dust aggregates into planetesimals. In this article, these processes are discussed, the physical properties of the emerging dusty or icy planetesimals are presented and compared to empirical evidence from within and without the Solar System. In conclusion, the formation of planetesimals by a gravitational collapse of dust “pebbles” seems the most likely.  相似文献   
7.
Based on the construction principle of the Closed Equilibrated Biological Aquatic System (C.E.B.A.S.) two novel combined animal-plant production systems were developed in laboratory scale the first of which is dedicated to mid-term operation in closed state up to two years. In principle both consist of the "classic" C.E.B.A.S. subcomponents: animal tank (Zoological Component), plant cultivators (Botanical Component), ammonia converting bacteria filter (Microbial Component) and data acquisition/control unit (Electronical Component). The innovative approach in the first system is the utilization of minimally three aquatic plant cultivators for different species. In this one the animal tank has a volume of about 160 liters and is constructed as an "endless-way system" surrounding a central unit containing the heat exchanger and the bacteria filter with volumes of about 1.5 liters each. A suspension plant cultivator (1 liter) for the edible duckweed Wolffia arrhiza is externally connected. The second plant cultivator is a meandric microalgal bioreactor for filamentous green algae. The third plant growth facility is a chamber with about 2.5 liters volume for cultivation of the "traditional" C.E.B.A.S. plant species, the rootless buoyant Ceratophyllum demersum. Both latter units are illuminated with 9 W fluorescent lamps. In the current experiment the animal tank contains the live-bearing teleost fish Xiphophorus helleri and the small pulmonate water snail Biomphalaria glabrata because their physiological adaptation to the closed system conditions is well known from many previous C.E.B.A.S. experiments. The water temperature is maintained at 25 degrees C and the oxygen level is regulated between 4 and 7 mg/l by switching on and off the plant cultivator illuminations according to a suitable pattern thus utilizing solely the oxygen produced by photosynthesis. The animals and the microorganisms of filter and biofilm provide the plants with a sufficient amount of carbon dioxide. Oxygen concentration, pH value, temperature and redox potential are on-line recorded. Ion concentrations and numbers of living germs in the system water are determined twice monthly in the laboratory from samples taken from a special "sample removal module"; the sample volume is automatically replaced from an reservoir container. A rotatory pump produces a water flow of about 38 l/min. For a similar smaller test system with approx. 10 l volume developed from the C.E.B.A.S.-MINI-MODULE a novel indirect solar energy supply is tested which has a buffer capacity to maintain the system for 7 days in darkness under central European climate conditions also in winter. It contains only a single plant cultivator which is operated with Wollfia arrhiza. This lemnacean plant is able to produce large amounts of plant biomass in a short time by vegetative reproduction via daughter fronds. This easy-to-handle apparatus is dedicated to be operative more than 4 month. The experimental animals and microorganisms are the same as in the large system. The paper provides detailed information on the system construction principles and the biological, physical and chemical data of the initial phase of the test runs of both systems with the main focus on the large one.  相似文献   
8.
Thermospheric model calculations are presented which explain the seasonal compositional changes of helium and argon by the combined effect of seasonal-latitudinal variations of turbulence and global seasonal winds. The observational base of the model calculations is given by empirical data of upper thermospheric densities and by estimates of the turbopause height derived from composition measurements and incoherent scatter temperatures in the lower thermosphere. The results are compared with observations of the seasonal variability of atomic oxygen in the turbopause region.  相似文献   
9.
Based on the experiences made with the Closed Equilibrated Biological Aquatic System (C.E.B.A.S.) which was primarily deveoloped for long-term and multi-generation experiments with aquatic animals and plants in a space station highly effective fresh water recycling modules were elaborated utilizing a combination of ammonia oxidizing bacteria filters and higher plants. These exhibit a high effectivity to eliminate phosphate and anorganic nitrogen compounds and arc. in addidition. able to contribute to the oxygen supply of the aquatic animals. The C.E.B.A.S. filter system is able to keep a closed artificial aquatic ecosystem containing teleost fishes and water snails biologically stable for several month and to eliminate waste products deriving from degraded dead fishes without a decrease of the oxygen concentration down to less than 3.5 mg/l at 25 °C. More advanced C.E.B.A.S. filter systems, the BIOCURE filters, were also developed for utilization in semiintensive and intensive aquaculture systems for fishes. In fact such combined animal-plant aquaculture systems represent highly effective productions sites for human food if proper plant and fish species are selected The present papers elucidates ways to novel aquaculture systems in which herbivorous fishes are raised by feeding them with plant biomass produced in the BIOCURE filters and presents the scheme of a modification which utilizes a plant species suitable also for human nutrition. Special attention is paid to the benefits of closed aquaculture system modules which may be integrated into bioregenerative life support systems of a higher complexity for, e. g.. lunar or planetary bases including some psychologiccal aspects of the introduction of animal protein production into plant-based life support systems. Moreover, the basic reproductive biological problems of aquatic animal breeding under reduced gravity are explained leading to a disposition of essential research programs in this context.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号