首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   0篇
航空   9篇
航天技术   1篇
  2009年   1篇
  1999年   3篇
  1998年   2篇
  1996年   2篇
  1995年   1篇
  1977年   1篇
排序方式: 共有10条查询结果,搜索用时 31 毫秒
1
1.
The rates of the most important ionization processes acting in interplanetary space on interstellar H, He, C, O, Ne and Ar atoms are critically reviewed in the paper. Their long-term modulations in the period 1974 – 1994 are reexamined using updated information on relevant cross-sections as well as direct or indirect data on variations of the solar wind/solar EUV fluxes based on IMP 8 measurements and monitoring of the solar 10.7 cm radio emission. It is shown that solar cycle related variations are pronounced (factor of 3 between maximum and minimum) especially for species such as He, Ne, C for which photoionization is the dominant loss process. Species sensitive primarily to the charge-exchange (as H) show only moderate fluctuations 20% around average. It is also demonstrated that new techniques that make use of simultaneous observations of neutral He atoms on direct and indirect orbits, or simultaneous measurements of He+ and He++ pickup ions and solar wind particles can be useful tools for narrowing the uncertainties of the He photoionization rate caused by insufficient knowledge of the solar EUV flux and its variations.  相似文献   
2.
SWE,a comprehensive plasma instrument for the WIND spacecraft   总被引:1,自引:0,他引:1  
The Solar Wind Experiment (SWE) on the WIND spacecraft is a comprehensive, integrated set of sensors which is designed to investigate outstanding problems in solar wind physics. It consists of two Faraday cup (FC) sensors; a vector electron and ion spectrometer (VEIS); a strahl sensor, which is especially configured to study the electron strahl close to the magnetic field direction; and an on-board calibration system. The energy/charge range of the Faraday cups is 150 V to 8 kV, and that of the VEIS is 7 V to 24.8 kV. The time resolution depends on the operational mode used, but can be of the order of a few seconds for 3-D measurements. Key parameters which broadly characterize the solar wind positive ion velocity distribution function will be made available rapidly from the GGS Central Data Handling Facility.  相似文献   
3.
We discuss the solar wind parameters measured in the distant heliosphere from the Voyager 2 spacecraft. Periodic variations in the speed of the wind observed at roughly the solar rotation period may correspond to interaction regions between slower and faster streams of wind. Since the interplanetary magnetic field is enhanced in such regions, they are important for the study of modulation of cosmic rays. Unfortunately, direct observation of the enhanced magnetic field from Voyager 2 has been made difficult by spacecraft-associated noise since 1989.  相似文献   
4.
We review observations from Voyager 2 of CIRs and merged CIRs in the outer heliosphere. The rather simple characteristics of the CIR-associated changes in plasma, magnetic field, and particles become more complex as observations are made at greater and greater distances. Pickup ions from charge exchange undoubtedly play an important role in the structure, but the full details are not yet understood. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
5.
We discuss the structure and evolution of CIRs and their successors in the outer heliosphere. These structures undergo significant evolution as they are convected to greater heliocentric distances. A progression of different types of structure are observed at increasing distance from the Sun. Similar structures are observed at similar heliocentric distance at different portions of the solar cycle. CIRs and their successors are associated with many important physical processes in the outer heliosphere. We discuss the relationship between these structures and recurrent phenomena such as cosmic ray variations, and review some of the associated theoretical models on the role of corotating structures and global merged interaction regions (GMIRs) in global cosmic ray modulation. We also discuss some outstanding questions related to the origin of non-dispersive quasi-periodic particle enhancements associated with CIRs and their successors in the outer heliosphere. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
6.
Corotating interaction regions (CIRs) in the middle heliosphere have distinct morphological features and associated patterns of turbulence and energetic particles. This report summarizes current understanding of those features and patterns, discusses how they can vary from case to case and with distance from the Sun and possible causes of those variations, presents an analytical model of the morphological features found in earlier qualitative models and numerical simulations, and identifies aspects of the features and patterns that have yet to be resolved. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
7.
8.
Simnett  G. M.  Kunow  H.  Flückiger  E.  Heber  B.  Horbury  T.  Kóta  J.  Lazarus  A.  Roelof  E. C.  Simpson  J. A.  Zhang  M.  Decker  R. B. 《Space Science Reviews》1998,83(1-2):215-258
The corotating particle events give us a unique opportunity to probe the three-dimensional structures of the heliosphere. This is especially true if we have observations over a period of extreme stability of the CIRs, such as existed over the recent solar minimum. We discuss how the observations fit into the context of current heliospheric magnetic field models. The energetic particle signatures of CIRs throughout the regions of the heliosphere covered by the deep-space missions are reviewed. The CIRs accelerate these particles and at the same time modulate both the high energy galactic cosmic rays and the anomalous cosmic rays.  相似文献   
9.
Voyagers 1 and 2 are now observing the latitudinal structure of the heliospheric magnetic field in the distant heliosphere (the legion between - 30 AU and the termination shock). Voyager 2 is observing the influence of the interstellar medium on the solar wind. The pressure of the interstellar pickup protons, measured by their contribution to pressure balanced structures, is greater than or equal to the magnetic pressure and much greater than the thermal pressures of the solar wind protons and electrons in the distant heliosphere. The solar wind speed is observed to decrease and the proton temperature increase with increasing distance from the sun. This may result from the production of pickup ions by the charge exchange process with the interstellar neutrals. The introduction of the pickup ions into the dynamics of the magnetized solar wind plasma appears to be an important new process which must be considered in future theoretical studies of the termination shock and boundary with the local interstellar medium.  相似文献   
10.
We revisit the transient interplanetary events of January 1 and September 23, 1978. Using in-situ and remote sensing observations at locations widely separated in longitudes and distances from the Sun, we infer that in both cases the overall shock surface had a very fast “nose” region with speeds >900 and >1500 km−1 in the January and September events, respectively, and much slower flank speeds (∼600 km−1 or less), suggesting a shock surface with a strong speed gradient with heliospheric longitude. The shock-nose regions are thus likely efficient acceleration sites of MeV ions, even at 1 AU from the Sun. Our 3D magnetohydrodynamics modeling suggests that a 24° × 24° localized disturbance at 18 solar radii injecting momentum 100 times the background solar wind input over 1 h can produce a disturbance in semi-quantitative agreement with the observed shock arrival time, plasma density and velocity time series in the January 1978 event.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号