首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   4篇
航空   5篇
  2022年   1篇
  2020年   1篇
  2019年   3篇
排序方式: 共有5条查询结果,搜索用时 828 毫秒
1
1.
晏松  楚武利 《航空动力学报》2019,34(11):2516-2528
以NASA Rotor 37为研究对象,采用数值模拟的方法研究了自循环机匣处理的引气位置在不同转速下对转子性能的影响。研究结果表明:自循环机匣处理的引气位置和转子转速对转子性能的影响具有交互性,其本质原因在于转子在不同转速下处于近失速状态时,转子叶顶区域的流动状态不同,从而造成引气位置和叶顶堵塞区域的相对位置会随着转子转速的变化而变化,进而对转子的性能影响呈现出交互性。通过对三种转速下自循环机匣处理的引气位置对转子稳定性的影响分析知,引气位置位于转子叶顶堵塞区尾缘处时对转子叶顶区的流动堵塞抑制能力最强,极大地改善了转子叶顶区域的流通状况,对转子的失速裕度改进量最为有利,在100%、90%和70%设计转速下,失速裕度改进量的最大值分别为7.46%、8.52%、6.14%。此外,通过对转子叶顶的流场细节分析得知,不同转速下自循环机匣处理的引气位置位于转子近失速工况的叶顶堵塞区尾缘处时,在叶顶造成的高比熵区最少,对转子效率的降低幅度最小,于效率最为有利。   相似文献   
2.
晏松  楚武利 《推进技术》2019,40(12):2734-2742
为了探究自循环机匣处理的引气口位置在叶顶变化时对压气机稳定性的影响,以亚声速压气机孤立转子为研究对象,采用数值模拟的方法对3种叶顶不同引气位置的自循环机匣处理方案进行了扩稳能力的研究。结果显示,引气位置在叶顶沿轴向变化时,3种引气位置获得的流量裕度分别为5.43%,22.77%,18.23%,扩稳能力呈现出先增强后减弱的趋势,引气位置越靠近叶顶低速阻滞区核心,扩稳能力越强。对自循环机匣处理后的叶顶流场进行分析,可知在叶顶引气的自循环机匣处理的扩稳机理在于:通过抽吸叶顶处低速阻滞流体和抑制叶顶泄漏流动来改善叶顶区的流动状况,从而达到扩稳目的。  相似文献   
3.
为缓解加工误差影响评估过程中的"维数灾难",结合展向平均假设和基于高斯过程的Karhunen-Loève展开,提出了一种由法向加工误差导致的三维叶片表面几何不确定性降阶模型.通过给定加工误差分布的标准差函数求解几何不确定性降阶模型,并运用伪蒙特卡洛方法随机生成样本,最终训练人工神经网络预测了加工误差对高负荷直叶栅气动性...  相似文献   
4.
不同轴向引气位置对自循环机匣处理的影响研究   总被引:1,自引:2,他引:1       下载免费PDF全文
晏松  楚武利  张皓光  刘凯 《推进技术》2019,40(7):1478-1489
针对转子失速时叶顶的具体流动情况,基于抽吸叶顶堵塞区低速流体的目的,设计了四种新的自循环机匣处理方案,探究其扩稳机理与常规自循环机匣处理的作用差异。数值计算选用Numeca Fine软件包的Euranus求解器,计算结果表明,通过抽吸叶顶堵塞区低速流体设计的自循环机匣处理结构,其达到的扩稳效果高于常规的自循环机匣处理。在优化设计中,当轴向引气位置位于转子叶顶堵塞区核心附近时,达到的扩稳效果最好,最大综合裕度改进量能达到15.00%。此外,本文还分析了自循环机匣处理后转子叶顶流场的差异,得出自循环机匣处理的扩稳机理在于把造成叶顶区堵塞流动的低速气流吸走,抑制了叶顶泄漏流动,改善了叶顶区的流动状况,以此来扩大转子的稳定工作范围。  相似文献   
5.
垂直于叶片弦线方向喷气对转子稳定性的影响研究   总被引:1,自引:1,他引:0       下载免费PDF全文
晏松  楚武利 《推进技术》2020,41(4):791-801
以NASA Rotor37为研究对象,采用数值模拟的方法进行叶顶喷气对转子稳定性的影响研究。研究表明,在叶顶垂直于叶片弦线方向喷气可以达到扩稳效果,其扩稳机理在于通过喷口喷射出的高速射流把叶顶泄漏流吹向转子吸力面,减弱了叶顶泄漏流对主流的影响,使得转子叶顶堵塞区域减小,改善了叶顶区域的流通状况,从而得到扩稳效果。在喷气流量对转子稳定性的研究中,喷气流量越大,对增强稳定性越有利。在所选取的1%,1.5%和2%三种喷气流量水平下,2%的喷气流量可以使转子的流量裕度提高4.24%,综合裕度改进量提高5.16%。此外,不同喷气流量对转子的流场影响不同,随着喷气流量的增大,除了可以降低叶顶前缘负荷外,还可以通过将激波位置推向下游,从而有利于减弱流动分离,对转子稳定性的提升更为有利。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号