首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
综合类   1篇
航天   3篇
  2007年   1篇
  2004年   1篇
  2003年   1篇
  2001年   1篇
排序方式: 共有4条查询结果,搜索用时 31 毫秒
1
1.
球形ZnS纳米粒子的制备和光学性质   总被引:4,自引:0,他引:4  
用快速均匀沉淀法制备了平均粒径3nm左右的球形ZnS纳米粒子。并且讨论了成长时间,反应温度,体系pH值,反应物浓度和配比对ZnS纳米粒子尺寸的影响。通过XRD,BET,紫外可见吸收光谱表征了ZnS纳米粒子的尺寸、结构和表面态性质。通过红外吸收光谱证明了吸附在ZnS纳米颗粒上的乙酸基起到控制粒子长大和防止团聚的作用。研究了ZnS纳米晶粒的荧光光谱,证实其在425nm处的蓝色发光峰是来源于表面硫空位与锌空位之间的电子-空穴复合跃迁发光。  相似文献   
2.
Water, vital for life, not only maintains the integrity of structural and metabolic biomolecules, it also transports them in solution or colloidal suspension. Any flow of water through a dormant or fossilized microbial community elutes molecules that are potentially recognizable as biomarkers. We hypothesize that the surface seepage channels emanating from crater walls and cliffs in Mars Orbiter Camera images results from fluvial erosion of the regolith as low-temperature hypersaline brines. We propose that, if such flows passed through extensive subsurface catchments containing buried and fossilized remains of microbial communities from the wet Hesperian period of early Mars (approximately 3.5 Ga ago), they would have eluted and concentrated relict biomolecules and delivered them to the surface. Life-supporting low-temperature hypersaline brines in Antarctic desert habitats provide a terrestrial analog for such a scenario. As in the Antarctic, salts would likely have accumulated in water-filled depressions on Mars by seasonal influx and evaporation. Liquid water in the Antarctic cold desert analogs occurs at -80 degrees C in the interstices of shallow hypersaline soils and at -50 degrees C in salt-saturated ponds. Similarly, hypersaline brines on Mars could have freezing points depressed below -50 degrees C. The presence of hypersaline brines on Mars would have extended the amount of time during which life might have evolved. Phototrophic communities are especially important for the search for life because the distinctive structures and longevity of their pigments make excellent biomarkers. The surface seepage channels are therefore not only of geomorphological significance, but also provide potential repositories for biomolecules that could be accessed by landers.  相似文献   
3.
We provide a scientific rationale for the astrobiological investigation of Mars. We suggest that, given practical constraints, the most promising locations for the search for former life on Mars are palaeolake craters and the evaporite deposits that may reside within them. We suggest that Raman spectroscopy offers a promising tool for the detection of evidence of former (or extant) biota on Mars. In particular, we highlight the detection of hopanoids as long-lived bacterial cell wall products and photosynthetic pigments as the most promising targets. We further suggest that Raman spectroscopy as a fibre optic-based instrument lends itself to flexible planetary deployment.  相似文献   
4.
We launched a cryptoendolithic habitat, made of a gneissic impactite inoculated with Chroococcidiopsis sp., into Earth orbit. After orbiting the Earth for 16 days, the rock entered the Earth's atmosphere and was recovered in Kazakhstan. The heat of entry ablated and heated the rock to a temperature well above the upper temperature limit for life to below the depth at which light levels are insufficient for photosynthetic organisms ( approximately 5 mm), thus killing all of its photosynthetic inhabitants. This experiment shows that atmospheric transit acts as a strong biogeographical dispersal filter to the interplanetary transfer of photosynthesis. Following atmospheric entry we found that a transparent, glassy fusion crust had formed on the outside of the rock. Re-inoculated Chroococcidiopsis grew preferentially under the fusion crust in the relatively unaltered gneiss beneath. Organisms under the fusion grew approximately twice as fast as the organisms on the control rock. Thus, the biologically destructive effects of atmospheric transit can generate entirely novel and improved endolithic habitats for organisms on the destination planetary body that survive the dispersal filter. The experiment advances our understanding of how island biogeography works on the interplanetary scale.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号