首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
航天技术   1篇
航天   1篇
  2010年   1篇
  1982年   1篇
排序方式: 共有2条查询结果,搜索用时 15 毫秒
1
1.
The primary objective of NASA's Mars Science Laboratory (MSL) mission, which will launch in 2011, is to characterize the habitability of a site on Mars through detailed analyses of the composition and geological context of surface materials. Within the framework of established mission goals, we have evaluated the value of a possible landing site in the Mawrth Vallis region of Mars that is targeted directly on some of the most geologically and astrobiologically enticing materials in the Solar System. The area around Mawrth Vallis contains a vast (>1?×?10? km2) deposit of phyllosilicate-rich, ancient, layered rocks. A thick (>150?m) stratigraphic section that exhibits spectral evidence for nontronite, montmorillonite, amorphous silica, kaolinite, saponite, other smectite clay minerals, ferrous mica, and sulfate minerals indicates a rich geological history that may have included multiple aqueous environments. Because phyllosilicates are strong indicators of ancient aqueous activity, and the preservation potential of biosignatures within sedimentary clay deposits is high, martian phyllosilicate deposits are desirable astrobiological targets. The proposed MSL landing site at Mawrth Vallis is located directly on the largest and most phyllosilicate-rich deposit on Mars and is therefore an excellent place to explore for evidence of life or habitability.  相似文献   
2.
In four decades following the Dust Bowl days of the 1930's, extensive areas of dry farming and rangeland on the semi-arid U.S. High Plains were transformed into a vast region of irrigated oases, producing meat and grain for much of the world. The agricultural economy has experienced such rapid growth in part because of the availability of ground water and because of development of new irrigation technology to use that water for agriculture. However, more water is being used than is being replaced. To estimate both the volume of water withdrawn and the regional scope of the problem a technique has been developed that combines multispectral data from Earth-orbiting satellite with known pumpage data for the same growing season. The location and extent of irrigated cropland—some with different crops watered at different times—is inventoried using computer-assisted analysis of the data from Landsat. The amount of water used is estimated by multiplying and summing surface area of irrigated agriculture and the average measured pumpage from sampled sites. Published findings to date are cited in the Selected References. All suggest transferability of a promising technology to the study of land transformation processes elsewhere.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号