首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
航空   4篇
航天   1篇
  2007年   1篇
  2005年   1篇
  1997年   1篇
  1979年   1篇
  1965年   1篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
The Geology of Mercury: The View Prior to the MESSENGER Mission   总被引:1,自引:0,他引:1  
Mariner 10 and Earth-based observations have revealed Mercury, the innermost of the terrestrial planetary bodies, to be an exciting laboratory for the study of Solar System geological processes. Mercury is characterized by a lunar-like surface, a global magnetic field, and an interior dominated by an iron core having a radius at least three-quarters of the radius of the planet. The 45% of the surface imaged by Mariner 10 reveals some distinctive differences from the Moon, however, with major contractional fault scarps and huge expanses of moderate-albedo Cayley-like smooth plains of uncertain origin. Our current image coverage of Mercury is comparable to that of telescopic photographs of the Earth’s Moon prior to the launch of Sputnik in 1957. We have no photographic images of one-half of the surface, the resolution of the images we do have is generally poor (∼1 km), and as with many lunar telescopic photographs, much of the available surface of Mercury is distorted by foreshortening due to viewing geometry, or poorly suited for geological analysis and impact-crater counting for age determinations because of high-Sun illumination conditions. Currently available topographic information is also very limited. Nonetheless, Mercury is a geological laboratory that represents (1) a planet where the presence of a huge iron core may be due to impact stripping of the crust and upper mantle, or alternatively, where formation of a huge core may have resulted in a residual mantle and crust of potentially unusual composition and structure; (2) a planet with an internal chemical and mechanical structure that provides new insights into planetary thermal history and the relative roles of conduction and convection in planetary heat loss; (3) a one-tectonic-plate planet where constraints on major interior processes can be deduced from the geology of the global tectonic system; (4) a planet where volcanic resurfacing may not have played a significant role in planetary history and internally generated volcanic resurfacing may have ceased at ∼3.8 Ga; (5) a planet where impact craters can be used to disentangle the fundamental roles of gravity and mean impactor velocity in determining impact crater morphology and morphometry; (6) an environment where global impact crater counts can test fundamental concepts of the distribution of impactor populations in space and time; (7) an extreme environment in which highly radar-reflective polar deposits, much more extensive than those on the Moon, can be better understood; (8) an extreme environment in which the basic processes of space weathering can be further deduced; and (9) a potential end-member in terrestrial planetary body geological evolution in which the relationships of internal and surface evolution can be clearly assessed from both a tectonic and volcanic point of view. In the half-century since the launch of Sputnik, more than 30 spacecraft have been sent to the Moon, yet only now is a second spacecraft en route to Mercury. The MESSENGER mission will address key questions about the geologic evolution of Mercury; the depth and breadth of the MESSENGER data will permit the confident reconstruction of the geological history and thermal evolution of Mercury using new imaging, topography, chemistry, mineralogy, gravity, magnetic, and environmental data.  相似文献   
2.
The consequences of the interaction between the solar wind and the local interstellar medium for the wind region enclosed by the heliospheric shock are reviewed. After identifying the principal mechanisms to influence the dynamics of the solar wind, an approach allowing the simultaneous incorporation of neutral atoms, pick-up ions, cosmic rays and energetic electrons into a multifluid model of the expanding wind plasma is outlined. The effects of these particle species are discussed in detail, with special emphasis on the electron component which behaves more like a quasi-static hot gas rather than an expanding fluid. This electron gas is effectively trapped within a three-dimensional trough of a circumsolar electric potential whose outer fringes are possibly determined by the density distribution of anomalous cosmic rays. The electrons are proven to be a globally structered component of great importance for the solar wind momentum flow contributing to a triggering of the solar wind dynamics by asymmetric interstellar boundary conditions. Finally, the consequences for the relative motion of the Sun and the local interstellar medium as well as for the solar system as a whole are described.  相似文献   
3.
Venus and Mars likely had liquid water bodies on their surface early in the Solar System history. The surfaces of Venus and Mars are presently not a suitable habitat for life, but reservoirs of liquid water remain in the atmosphere of Venus and the subsurface of Mars, and with it also the possibility of microbial life. Microbial organisms may have adapted to live in these ecological niches by the evolutionary force of directional selection. Missions to our neighboring planets should therefore be planned to explore these potentially life-containing refuges and return samples for analysis. Sample return missions should also include ice samples from Mercury and the Moon, which may contain information about the biogenic material that catalyzed the early evolution of life on Earth (or elsewhere). To obtain such information, science-driven exploration is necessary through varying degrees of mission operation autonomy. A hierarchical mission design is envisioned that includes spaceborne (orbital), atmosphere (airborne), surface (mobile such as rover and stationary such as lander or sensor), and subsurface (e.g., ground-penetrating radar, drilling, etc.) agents working in concert to allow for sufficient mission safety and redundancy, to perform extensive and challenging reconnaissance, and to lead to a thorough search for evidence of life and habitability.  相似文献   
4.
Our knowledge of Mercury has improved dramatically since the flight of Mariner 10. The planet is probably differentiated into a large iron-rich core (75% of the total radius) and a relatively thin (600 km) silicate mantle. Although the surface of Mercury superficially resembles the Moon, there are three main differences: (1) large areas of relatively old intercrater plains, (2) a widespread (probably global) distribution of lobate scarps, and (3) a similar albedo between young smooth plains and the older mercurian highlands. The origin of Mercury's plains units is still uncertain but a volcanic origin is favored for at least large tracts of the younger smooth plains. The older intercrater plains seem to span a range of ages, large tracts of which appear to have been implaced during the period of intense bombardment. The widespread distribution of lobate scarps probably resulted from a period of global contraction relatively late in Mercury's history. This period of contraction probably resulted primarily from cooling of the lithosphere and/or core following core formation. The crater diameter density distribution on the Moon, Mars and Mercury indicates that all the terrestrial planets experienced a period of intense bombardment early in their histories and that the objects responsible for this bombardment probably belonged to the same population(s).  相似文献   
5.
The development engineering involved in large scale systems is but one of many problems included in acquisition of these systems. The purpose of this paper is to explore some of the engineering problems encountered in the development of the Strategic Air Command and Control System 465L and to indicate how the interaction between the technical problems and the nontechnical problems affects the final engineering decisions. In this paper we will indicate the basic requirements for the system and show how the system was configured to meet these requirements. The deficiencies uncovered in the design and first cut solutions to the problems and the compromises which were necessary to implement the system will also be discussed. Illustrative examples will be used to show how the design evolved into the final system configuration which is now in use.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号