首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
航空   4篇
航天技术   2篇
航天   1篇
  2009年   1篇
  2007年   1篇
  2000年   1篇
  1997年   1篇
  1995年   1篇
  1985年   1篇
  1979年   1篇
排序方式: 共有7条查询结果,搜索用时 21 毫秒
1
1.
Energetic ion composition measurements have now been performed from earth orbiting satellites for more than a decade. As early as 1972 we knew that energetic (keV) ions of terrestrial origin represented a non-negligible component of the storm time ring current. We have now assembled a significant body of knowledge concerning energetic ion composition throughout much of the earth's magnetosphere. We know that terrestrial ions are a common component of the hot equatorial magnetospheric plasma in the ring current and the plasma sheet out to ? 23 RE. During periods of enhanced geomagnetic activity this component may become dominant. There is also clear evidence that the terrestrial component (specifically O+) is strongly dependent on solar cycle. Terrestrial ion source, transport, and acceleration regions have been identified in the polar auroral region, over the polar caps, in the magnetospheric boundary layers, and within the magnetotail lobes and plasma sheet boundary layer. Combining our present knowledge of these various magnetospheric ion populations, it is concluded that the primary terrestrial ion circulation pattern associated with enhanced geomagnetic activity involves direct injection from the auroral ion acceleration region into the plasma sheet boundary layer and central plasma sheet. The observed terrestrial component of the magnetospheric boundary layer and magnetotail lobes are inadequate to provide the required influx. They may, however, contribute significantly to the maintenence of the plasma sheet terrestrial ion population, particularly during periods of reduced geomagnetic activity. It is further concluded, on the basis of the relative energy distributions of H+ and O+ in the plasma sheet, that O+ probably contributes significantly to the ring current population at energies inaccessible to present ion composition instrumentation (? 30 keV).  相似文献   
2.
Ion composition data from the first 22 months of operation of the Polar/TIMAS instrument, covering the 15-eV/e to 33-keV/e energy range, have been surveyed to determine the typical abundance, at solar minimum, of N2+, NO+ and O2+ ions in the auroral ion outflow, as compared to that of the better known O+ ions. The results indicate that molecular ions have roughly the same energy distribution as the O+ ions, with maximum differential flux occurring below 400 eV, but are far less abundant, by two orders of magnitude. The molecular ions also differ from the O+ ions in that they seem more specifically associated with enhanced geomagnetic activity.  相似文献   
3.
THE CLUSTER ION SPECTROMETRY (CIS) EXPERIMENT   总被引:5,自引:0,他引:5  
The Cluster Ion Spectrometry (CIS) experiment is a comprehensive ionic plasma spectrometry package on-board the four Cluster spacecraft capable of obtaining full three-dimensional ion distributions with good time resolution (one spacecraft spin) with mass per charge composition determination. The requirements to cover the scientific objectives cannot be met with a single instrument. The CIS package therefore consists of two different instruments, a Hot Ion Analyser (HIA) and a time-of-flight ion COmposition and DIstribution Function analyser (CODIF), plus a sophisticated dual-processor-based instrument-control and Data-Processing System (DPS), which permits extensive on-board data-processing. Both analysers use symmetric optics resulting in continuous, uniform, and well-characterised phase space coverage. CODIF measures the distributions of the major ions (H+, He+, He++, and O+) with energies from ~0 to 40 keV/e with medium (22.5°) angular resolution and two different sensitivities. HIA does not offer mass resolution but, also having two different sensitivities, increases the dynamic range, and has an angular resolution capability (5.6° × 5.6°) adequate for ion-beam and solar-wind measurements.  相似文献   
4.
The Rosetta Orbiter Spectrometer for Ion and Neutral Analysis (ROSINA) will answer important questions posed by the mission’s main objectives. After Giotto, this will be the first time the volatile part of a comet will be analyzed in situ. This is a very important investigation, as comets, in contrast to meteorites, have maintained most of the volatiles of the solar nebula. To accomplish the very demanding objectives through all the different phases of the comet’s activity, ROSINA has unprecedented capabilities including very wide mass range (1 to >300 amu), very high mass resolution (mm > 3000, i.e. the ability to resolve CO from N2 and 13C from 12CH), very wide dynamic range and high sensitivity, as well as the ability to determine cometary gas velocities, and temperature. ROSINA consists of two mass spectrometers for neutrals and primary ions with complementary capabilities and a pressure sensor. To ensure that absolute gas densities can be determined, each mass spectrometer carries a reservoir of a calibrated gas mixture allowing in-flight calibration. Furthermore, identical flight-spares of all three sensors will serve for detailed analysis of all relevant parameters, in particular the sensitivities for complex organic molecules and their fragmentation patterns in our electron bombardment ion sources.  相似文献   
5.
Dextre: Improving maintenance operations on the International Space Station   总被引:1,自引:0,他引:1  
The Special Purpose Dexterous Manipulator (SPDM), known as “Dextre”, is currently slated to launch in February 2008 for deployment on the International Space Station (ISS) as the final component of Canada's Mobile Servicing System (MSS). Dextre's primary role on the Space Station is to perform repair and replacement (R&R) maintenance tasks on robotically compatible hardware such as Orbital Replaceable Units (ORUs), thereby eventually easing the burden on the ISS crew.This burden on the on-orbit crew translates practically into crew time being a limited resource on the ISS, and as such, finding ways to assist the crew in performing their tasks or offloading the crew completely when appropriate is a bonus to the ISS program. This is already accomplished very effectively by commanding as many non-critical robotics tasks as possible, such as powering up and free-space maneuvering of the Space Station Remote Manipulator System (SSRMS), known as “Canadarm2”, from the Ground.Thus, beyond its primary role, and based on an increasing clarity regarding the challenges of external maintenance on the ISS, Dextre is being considered for use in a number of ways with the objective of improving ISS operations while reducing and optimizing the use of crew time through the use of ground control for various tasks, pre-positioning hardware, acting as a temporary storage platform to break an Extra Vehicular Activity (EVA) day into manageable timelines, and extending the physical reach and range of the Canadarm2.This paper discusses the planned activities and operations for Dextre an rationale for how these will help optimize the use of crew resources on the ISS.  相似文献   
6.
The Toroidal Imaging Mass-Angle Spectrograph (TIMAS) for the polar mission   总被引:1,自引:0,他引:1  
The science objectives of the Toroidal Imaging Mass-Angle Spectrograph (TIMAS) are to investigate the transfer of solar wind energy and momentum to the magnetosphere, the interaction between the magnetosphere and the ionosphere, the transport processes that distribute plasma and energy throughout the magnetosphere, and the interactions that occur as plasma of different origins and histories mix and interact. In order to meet these objectives the TIMAS instrument measures virtually the full three-dimensional velocity distribution functions of all major magnetospheric ion species with one-half spin period time resolution. The TIMAS is a first-order double focusing (angle and energy), imaging spectrograph that simultaneously measures all mass per charge components from 1 AMU e–1 to greater than 32 AMU e–1 over a nearly 360° by 10° instantaneous field-of-view. Mass per charge is dispersed radially on an annular microchannel plate detector and the azimuthal position on the detector is a map of the instantaneous 360° field of view. With the rotation of the spacecraft, the TIMAS sweeps out very nearly a 4 solid angle image in a half spin period. The energy per charge range from 15 eV e–1 to 32 keV e–1 is covered in 28 non-contiguous steps spaced approximately logarithmically with adjacent steps separated by about 30%. Each energy step is sampled for approximately 20 ms;14 step (odd or even) energy sweeps are completed 16 times per spin. In order to handle the large volume of data within the telemetry limitations the distributions are compressed to varying degrees in angle and energy, log-count compressed and then further compressed by a lossless technique. This data processing task is supported by two SA3300 microprocessors. The voltages (up to 5 kV) for the tandem toroidal electrostatic analyzers and preacceleration sections are supplied from fixed high voltage supplies using optically controlled series-shunt regulators.  相似文献   
7.
Heavy ions in the magnetosphere   总被引:2,自引:0,他引:2  
For purposes of this review heavy ions include all species of ions having a mass per unit charge of 2 AMU or greater. The discussion is limited primarily to ions in the energy range between 100 eV and 100 keV. Prior to the discovery in 1972 of large fluxes of energetic O+ ions precipitating into the auroral zone during geomagnetic storms, the only reported magnetosphere ion species observed in this energy range were helium and hydrogen. More recently O+ and He+ have been identified as significant components of the storm time ring current, suggesting that an ionosphere source may be involved in the generation of the fluxes responsible for this current. Mass spectrometer measurements on board the S3-3 satellite have shown that ionospheric ions in the auroral zone are frequently accelerated upward along geomagnetic field lines to several keV energy in the altitude region from 5000 km to greater than 8000 km. These observations also show evidence for acceleration perpendicular to the magnetic field and thus cannot be explained by a parallel electric field alone. This auroral acceleration region is most likely the source for the magnetospheric heavy ions of ionospheric origin, but further acceleration would probably be required to bring them to characteristic ring current energies. Recent observations from the GEOS-1 spacecraft combined with earlier results suggest comparable contributions to the hot magnetopheric plasma from the solar wind and the ionosphere.Proceedings of the Symposium on Solar Terrestrial Physics held in Innsbruck, May–June 1978.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号