首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16篇
  免费   0篇
航空   5篇
航天技术   6篇
航天   5篇
  2017年   1篇
  2016年   1篇
  2012年   1篇
  2011年   2篇
  2009年   1篇
  2008年   1篇
  2004年   1篇
  2002年   1篇
  2001年   1篇
  1999年   1篇
  1997年   2篇
  1995年   1篇
  1992年   1篇
  1980年   1篇
排序方式: 共有16条查询结果,搜索用时 15 毫秒
1.
2.
The primary objective of the Laser Interferometer Space Antenna (LISA) mission is to detect and observe gravitational waves from massive black holes and galactic binaries in the frequency range 10−4 to 10−1 Hz. This low-frequency range is inaccessible to ground-based interferometers because of the unshieldable background of local gravitational noise and because ground-based interferometers are limited in length to a few km. LISA is an ESA cornerstone mission and recently had a system study (Ref. 1) carried out by a consortium led by Astrium, which confirmed the basic configuration for the payload with only minor changes, and provided detailed concepts for the spacecraft and mission design. The study confirmed the need for a drag-free technology demonstration mission to develop the inertial sensors for LISA, before embarking on the build of the flight sensors. With a technology demonstration flight in 2005, it would be possible to carry out LISA as a joint ESA-NASA mission with a launch by 2010 subject to the funding programmatics. The baseline for LISA is three disc-like spacecraft each of which consist of a science module which carries the laser interferometer payload (two in each science module) and a propulsion module containing an ion drive and the hydrazine thrusters of the AOCS. The propulsion module is used for the transfer from earth escape trajectory provided by the Delta II launch to the operational orbit. Once there the propulsion module is jettisoned to reduce disturbances on the payload. Detailed analysis of thermal and gravitational disturbances, a model of the drag-free control and of the interferometer operation confirm that the strain sensitivity of the interferometer will be achieved.  相似文献   
3.
无人机航迹规划技术研究及发展趋势   总被引:6,自引:0,他引:6  
通过对无人机航迹规划的研究,构建了无人机航迹规划的结构框架;分析了无人机系统约束及威胁场约束,探讨了无人机航迹几何建模方法及规划算法的国内外研究概况;并着重分析了规划算法。最后,阐述了无人机航迹规划面临的关键问题及发展趋势。  相似文献   
4.
Lauretta  D. S.  Balram-Knutson  S. S.  Beshore  E.  Boynton  W. V.  Drouet d’Aubigny  C.  DellaGiustina  D. N.  Enos  H. L.  Golish  D. R.  Hergenrother  C. W.  Howell  E. S.  Bennett  C. A.  Morton  E. T.  Nolan  M. C.  Rizk  B.  Roper  H. L.  Bartels  A. E.  Bos  B. J.  Dworkin  J. P.  Highsmith  D. E.  Lorenz  D. A.  Lim  L. F.  Mink  R.  Moreau  M. C.  Nuth  J. A.  Reuter  D. C.  Simon  A. A.  Bierhaus  E. B.  Bryan  B. H.  Ballouz  R.  Barnouin  O. S.  Binzel  R. P.  Bottke  W. F.  Hamilton  V. E.  Walsh  K. J.  Chesley  S. R.  Christensen  P. R.  Clark  B. E.  Connolly  H. C.  Crombie  M. K.  Daly  M. G.  Emery  J. P.  McCoy  T. J.  McMahon  J. W.  Scheeres  D. J.  Messenger  S.  Nakamura-Messenger  K.  Righter  K.  Sandford  S. A. 《Space Science Reviews》2017,212(1-2):925-984

In May of 2011, NASA selected the Origins, Spectral Interpretation, Resource Identification, and Security–Regolith Explorer (OSIRIS-REx) asteroid sample return mission as the third mission in the New Frontiers program. The other two New Frontiers missions are New Horizons, which explored Pluto during a flyby in July 2015 and is on its way for a flyby of Kuiper Belt object 2014 MU69 on January 1, 2019, and Juno, an orbiting mission that is studying the origin, evolution, and internal structure of Jupiter. The spacecraft departed for near-Earth asteroid (101955) Bennu aboard an United Launch Alliance Atlas V 411 evolved expendable launch vehicle at 7:05 p.m. EDT on September 8, 2016, on a seven-year journey to return samples from Bennu. The spacecraft is on an outbound-cruise trajectory that will result in a rendezvous with Bennu in November 2018. The science instruments on the spacecraft will survey Bennu to measure its physical, geological, and chemical properties, and the team will use these data to select a site on the surface to collect at least 60 g of asteroid regolith. The team will also analyze the remote-sensing data to perform a detailed study of the sample site for context, assess Bennu’s resource potential, refine estimates of its impact probability with Earth, and provide ground-truth data for the extensive astronomical data set collected on this asteroid. The spacecraft will leave Bennu in 2021 and return the sample to the Utah Test and Training Range (UTTR) on September 24, 2023.

  相似文献   
5.
Two-dimensional calculations of ionization-shockwave propagation into a curved molecular cloud are presented. Density enhancement occurs due to the combined effects of cloud curvature and radiation flow. The star formation process is expected to be enhanced near the edges of irregularly shaped molecular clouds.Authors listed alphabetically  相似文献   
6.
Organic compounds are synthesized in the interstellar medium and can be delivered to planetary surfaces such as the early Earth, where they mix with endogenous species. Some of these compounds are amphiphilic, having polar and nonpolar groups on the same molecule. Amphiphilic compounds spontaneously self-assemble into more complex structures such as bimolecular layers, which in turn form closed membranous vesicles. The first forms of cellular life required self-assembled membranes that were likely to have been produced from amphiphilic compounds on the prebiotic Earth. Laboratory simulations show that such vesicles readily encapsulate functional macromolecules, including nucleic acids and polymerases. The goal of future investigations will be to fabricate artificial cells as models of the origin of life.  相似文献   
7.
对接综合试验台轨迹规划算法研究   总被引:2,自引:0,他引:2  
为实现模拟空间两飞行器对接动力学过程的对接综合试验台的平稳对接,提出了一种基于加速度控制的轨迹规划算法。给出了不同初始条件下的规划方法,以及时转动自由度的特殊处理。物理试验结果表明,规划模型能精确控制平台从初始零位运动到主被动对接机构初次接触位置,且最后时刻平台姿态与对接试验的初始条件完全吻合。该算法可直接用于对接综合试验台的控制。  相似文献   
8.
Infrared observations, combined with realistic laboratory simulations, have revolutionized our understanding of interstellar ice and dust, the building blocks of comets. Ices in molecular clouds are dominated by the very simple molecules H2O, CH3OH, NH3, CO, CO2, and probably H2CO and H2. More complex species including nitriles, ketones, and esters are also present, but at lower concentrations. The evidence for these, as well as the abundant, carbon-rich, interstellar, polycyclic aromatic hydrocarbons (PAHs) is reviewed. Other possible contributors to the interstellar/pre-cometary ice composition include accretion of gas-phase molecules and in situ photochemical processing. By virtue of their low abundance, accretion of simple gas-phase species is shown to be the least important of the processes considered in determining ice composition. On the other hand, photochemical processing does play an important role in driving dust evolution and the composition of minor species. Ultraviolet photolysis of realistic laboratory analogs readily produces H2, H2CO, CO2, CO, CH4, HCO, and the moderately complex organic molecules: CH3CH2OH (ethanol), HC(=O)NH2 (formamide), CH3C(=O)NH2 (acetamide), R-CN (nitriles), and hexamethylenetetramine (HMT, C6H12N4), as well as more complex species including amides, ketones, and polyoxymethylenes (POMs). Inclusion of PAHs in the ices produces many species similar to those found in meteorites including aromatic alcohols, quinones and ethers. Photon assisted PAH-ice deuterium exchange also occurs. All of these species are readily formed and are therefore likely cometary constituents. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   
9.
We present the photochemical and thermal evolution of both non-polar and polar ices representative of interstellar and pre-cometary grains. Ultraviolet photolysis of the non-polar ices comprised of O2, N2, and CO produces CO2, N2O, O3, CO3, HCO, H2CO, and possibly NO and NO2. When polar ice analogs (comprised of H2O, CH3OH, CO, and NH3) are exposed to UV radiation, simple molecules are formed including: H2, H2CO, CO2, CO, CH4, and HCO (the formyl radical). Warming produces moderately complex species such as CH3CH2OH (ethanol), HC(=O)NH2 (formamide), CH3C(=O)NH2 (acetamide), R-CN and/or R-NC (nitriles and/or isonitriles). Several of these are already known to be in the interstellar medium, and their presence indicates the importance of grain processing. Infrared spectroscopy, 1H and 13C nuclear magnetic resonance (NMR) spectroscopy, and gas chromatography-mass spectrometry demonstrate that after warming to room temperature what remains is an organic residue composed primarily of hexamethylenetetramine (HMT, C6H12N4) and other complex organics including the amides above and polyoxymethylene (POM) and its derivatives. The formation of these organic species from simple starting mixtures under conditions germane to astrochemistry may have important implications for the organic chemistry of interstellar ice grains, comets and the origins of life.  相似文献   
10.
瑞士加工中心制造商威力铭-马科黛尔公司着重于质量和生产效率,主要活跃于航空/航天、精密机械、钟表和医疗行业,并以其为用户提供的高性能交钥匙解决方案而著称.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号