首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18篇
  免费   0篇
航天技术   6篇
航天   12篇
  2021年   2篇
  2014年   3篇
  2012年   1篇
  2005年   1篇
  2001年   1篇
  1999年   1篇
  1997年   2篇
  1996年   1篇
  1992年   1篇
  1988年   1篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1979年   1篇
排序方式: 共有18条查询结果,搜索用时 31 毫秒
1.
Complex honeycomb space structures (i.e. antennas, solar panels, etc.) must be inspected and accurately tested before flight.The thermography can be employed with success for the detection of the position of defects (delaminations, noneffective bondings, cracks, etc.) and for the evaluation of their size and geometry in all the cases in which the defect acts as a thermal resistance due to the low conductivity of the air filling the defect volume.The basic idea is to create in the specimen a heat flow distribution that is altered by the presence of the defect.The surface temperature distribution is then measured by means of a thermograph and is correlated with the presence of the defect.A numerical analysis and preliminary experiments have been carried out which show the feasibility of the method as applied to honeycomb structures.  相似文献   
2.
Material Science and Life Science experiments in microgravity both have urgent needs of evaluating the temperature distribution within and on the surface of liquid zones. Non intrusive methods are available which measure the IR radiations emitted by the surface. The thermograph systems have a number of advantages since they supply a thermal picture of the surface with sufficient time, space and temperature accuracy. A computerized system has been designed for data acquisition and elaboration and used for ground experiments; the system can also be used for space experiments with some modifications. Non intrusive measurements of bulk temperature in two dimensional liquid flow fields can be made by means of optical methods which detect variations of the index of refraction. A method is proposed which is able to take with the same optical apparatus shadowgraph. Schlieren and differential interferometers pictures. A computerized system is proposed for data acquisition and elaboration.  相似文献   
3.
One of the most important problems for performing a good design of the spacecraft attitude control law is connected to its robustness when some uncertainty parameters are present on the inertial and/or on the elastic characteristics of a satellite. These uncertainties are generally intrinsic on the modeling of complex structures and in the case of large flexible structures they can be also attributed to secondary effects associated to the elasticity. One of the most interesting issues in modeling large flexible space structures is associated to the evaluation of the inertia tensor which in general depends not only on the geometric ‘fixed’ characteristic of the satellite but also on its elastic displacements which of course in turn modify the ‘shape’ of the satellite. Usually these terms can be considered of a second order of magnitude if compared with the ones associated to the rigid part of a structure. However the increasing demand on the dimension of satellites due to the presence for instance of very large solar arrays (necessary to generate power) and/or large antennas has the necessity to investigate their effects on their global dynamic behavior in more details as a consequence. In the present paper a methodology based on classical Lagrangian approach coupled with a standard Finite Element tool has been used to derive the full dynamic equations of an orbiting flexible satellite under the actions of gravity, gravity gradient forces and attitude control. A particular attention has been paid to the study of the effects of flexibility on the inertial terms of the spacecraft which, as well known, influence its attitude dynamic behavior. Furthermore the effects of the attitude control authority and its robustness to the uncertainties on inertial and elastic parameters has been investigated and discussed.  相似文献   
4.
Preface     
  相似文献   
5.
A number of missions are in progress for Earth resources satellites to perform soil diagnosis by observing the bare soil thermal response to the heat input from the surrounding atmosphere. Heat capacity missions (and similar missions) are accomplished by measuring the soil temperature at the times of the satellite passes over the soil site.The models which are usually adopted assume that, for atmospheric conditions periodically changing during the day, the surface temperature time dependence is a function of the soil thermal inertia alone (for a dry soil).The present author has shown elsewhere that a more appropriate, two dimensional finite element modelling of the thermal behaviour of the soil, exhibits a dependence of the surface temperature time evolution on both the thermal conductivity (k) and on the volume heat capacity (?c) (for no evaporation at the interface). At least two independent temperature measurements are necessary in order to get information about k and ?c. It is shown that, within the range of values of k and ?c of the usual soils, temperature measurements taken at two successive satellite passes may yield the necessary information on the soil thermophysical properties. Charts can be constructed which will provide information on k and ?c when two soil temperatures are measured at proper times.  相似文献   
6.
The different acceleration components on the ISS that are responsible for the generation of convective motions in a fluid cell either in the presence of density gradients or in quasi-isodense processes, are analyzed. The NASA measurements of the quasi-steady and periodic acceleration on the ISS are considered and their effects on fluid-dynamic experiments are computed and discussed under different assumptions. In particular, numerical simulations are carried out to identify the relative importance of linear and pendular accelerations, due to possible rotations of the P/L around its center of mass. The effects caused by variable accelerations created by an isolation mount that exhibits an attenuation factor not constant within the payload volume, caused by the reaction forces of the umbilicals, are computed and analyzed.  相似文献   
7.
The planetary hypothesis of the solar cycle is an old idea in which the gravitational influence of the planets has a non-negligible effect on the causes of the solar magnetic cycle. The advance of this hypothesis is based on phenomenological correlations between dynamical parameters of the Sun’s movement around the barycentre of the Solar System and sunspots time series; and more especially, identifying relationships linking solar barycentric dynamics with prolonged minima (especially Grand Minima events). However, at present there is no clear physical mechanism relating these phenomena. The possible celestial influence on solar cycle modulation is of great importance not only in solar physics but also in Earth sciences, because prolonged solar minima have associated important climatic and telluric variations, in particular, during the Maunder and Dalton Minimum. In this work we looked for a possible causal link in relation with solar barycentric dynamics and prolonged minima events. We searched for particular changes in the Sun’s acceleration and concentrated on long-term variations of the solar cycle. We show how the orbital angular momentum of the Sun evolves and how the inclination of the solar barycentric orbit varies during the epochs of orbital retrogressions. In particular, at these moments, the radial component of the Sun’s acceleration (i.e., in the barycentre-Sun direction) had an exceptional magnitude. These radial impulses occurred at the very beginning of the Maunder Minimum, during the Dalton Minimum and also at the maximum of cycle 22 before the present extended minimum. We also found a strong correlation between the planetary torque and the observed sunspots international number around that maximum. We apply our results in a novel theory of Sun–planets interaction that it is sensitive to Sun barycentric dynamics and found a very important effect on the Sun’s capability of storing hypothetical reservoirs of potential energy that could be released by internal flows and might be related to the solar cycle. This process begins about 40 years before the solar angular momentum inversions, i.e., before Maunder Minimum, Dalton Minimum, and before the present extended minimum. Our conclusions suggest a dynamical characterization of peculiar prolonged solar minima. We discuss the possible implications of these results for the solar cycle including the present extended minimum.  相似文献   
8.
9.
To investigate the precursory signature of earthquakes on low frequency (LF) signal propagation, six earthquakes, having magnitude greater than equal to 6.5 and depth less than equal to 30 km, are being studied. The base line level of 40 kHz signal, transmitted from JJY station, Japan, is analysed with respect to Vd statistical parameter. Results show that the Vd parameter values starts fluctuating from its ambient levels before and during the days of the earthquakes, with significant variation starting 1–3 days prior to the earthquake concerned. This present study is an approach for identifying the precursory signatures of earthquakes on LF signal propagation using a new methodology with Vd parameter.  相似文献   
10.
Potential application of non invasive surface temperature measurements in Material Science and Fluid Science microgravity experiments is reviewed by analyzing the experiments that can benefit of thermographic techniques and by identifying the parameters that can be directly or indirectly measured. The hardware and software requirements of a thermographic equipment are indicated for a system of use in space.

The capabilities and the relevant features are described of a computerized system, conceived and breadboarded in connection to ESA activities related to Fluid Science Facilities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号