首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
航空   3篇
航天技术   2篇
航天   1篇
  2010年   1篇
  2006年   1篇
  2004年   1篇
  1998年   1篇
  1994年   1篇
  1981年   1篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
Calculations of total dose and dose equivalent as a function of time since the start of the event are presented for four of the major solar particle events that occurred during the period from August to December 1989. Results are presented for exposures to the skin, ocular lens and bone marrow shielded by a nominal thickness of aluminum shielding, comparable to that provided by a spacesuit. The calculated curves of organ dose and dose equivalent versus time are parameterized using a Weibull functional form for the fitting equation. The fitting parameters are determined using least squares regression techniques. These results provide a useful starting point for the development of methods to predict the cumulative doses and times to reach various dose limits from a limited number of dose measurements early in a solar particle event.  相似文献   
2.
Grazing-incidence optics has revolutionized soft-X-ray astronomy yet the scientifically important hard-X-ray region has gone relatively unexplored at high sensitivity and fine angular scales. This situation is now changing with several flight-ready balloon-borne focusing telescopes and planned satellite-borne observatories. This review discusses some of the developments in mirror and focal plane technologies that are making these payloads possible.  相似文献   
3.
Less than five decades ago, the first X-ray observations of the sky were made using simple devices such as film and geiger counters with crude collimators. These instruments were carried aloft by sounding rockets and made observations lasting only a few minutes at most. Today, orbiting observatories, utilizing high-resolution CCDs at the focus of arc sec optics, have lifetimes measured in years. To maintain the pace of discovery in X-ray astronomy, detectors must continue to evolve into devices of ever increasing sensitivity and sophistication. Further progress depends upon a host of technologies: grazing incidence optics, proportional counters, semiconductors, calorimeters, etc. In this article we present a brief qualitative overview of these technologies and of the principles behind them, as well as some examples of how they are employed in scientific missions for X-ray observations at energies up to 100 keV.  相似文献   
4.
A pair of pseudo-random mask telescopes is being constructed for Spacelab 2, mainly to observe the emission from galaxy clusters at energies from 2.5 to 25 keV. The main features and expected performance of the telescopes is described.  相似文献   
5.
The Lunar Orbiter Laser Altimeter (LOLA) is an instrument on the payload of NASA’s Lunar Reconnaissance Orbiter spacecraft (LRO) (Chin et al., in Space Sci. Rev. 129:391–419, 2007). The instrument is designed to measure the shape of the Moon by measuring precisely the range from the spacecraft to the lunar surface, and incorporating precision orbit determination of LRO, referencing surface ranges to the Moon’s center of mass. LOLA has 5 beams and operates at 28 Hz, with a nominal accuracy of 10 cm. Its primary objective is to produce a global geodetic grid for the Moon to which all other observations can be precisely referenced.  相似文献   
6.
With 5-7 month long duration missions at 51.6 degrees inclination in Low Earth Orbit, the ionizing radiation levels to which International Space Station (ISS) crewmembers are exposed will be the highest planned occupational exposures in the world. Even with the expectation that regulatory dose limits will not be exceeded during a single tour of duty aboard the ISS, the "as low as reasonably achievable" (ALARA) precept requires that radiological risks be minimized when possible through a dose optimization process. Judicious placement of efficient shielding materials in locations where crewmembers sleep, rest, or work is an important means for implementing ALARA for spaceflight. Polyethylene (CnHn) is a relatively inexpensive, stable, and, with a low atomic number, an effective shielding material that has been certified for use aboard the ISS. Several designs for placement of slabs or walls of polyethylene have been evaluated for radiation exposure reduction in the Crew Quarters (CQ) of the Zvezda (Star) Service Module. Optimization of shield designs relies on accurate characterization of the expected primary and secondary particle environment and modeling of the predicted radiobiological responses of critical organs and tissues. Results of the studies shown herein indicate that 20% or more reduction in equivalent dose to the CQ occupant is achievable. These results suggest that shielding design and risk analysis are necessary measures for reducing long-term radiological risks to ISS inhabitants and for meeting legal ALARA requirements. Verification of shield concepts requires results from specific designs to be compared with onboard dosimetry.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号