首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
航天技术   3篇
航天   3篇
  2018年   2篇
  2012年   1篇
  2009年   1篇
  2008年   1篇
  2004年   1篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
Ali SR  Alam T  Kamaluddin 《Astrobiology》2004,4(4):420-426
The interaction of two naturally occurring aromatic alpha-amino acids, namely, tryptophan and phenylalanine, with zinc, nickel, cobalt, and copper ferrocyanides has been studied. Both amino acids showed a high adsorption affinity toward metal ferrocyanides at neutral pH (7.0). Adsorption trends followed the Langmuir adsorption isotherm. Values of the Langmuir constants K(L) and X(m) suggest tryptophan is a better adsorbate than phenylalanine. Zinc ferrocyanide showed the highest adsorption, while the minimum adsorption was found in the case of copper ferrocyanide. Infrared spectral studies of adsorbate, adsorbent, and adsorption adducts indicate that adsorption occurs because of the interaction of adsorbate molecules with outer divalent metal ions present in the lattice of metal ferrocyanides. The present investigation supports the hypothesis that metal ferrocyanides might have concentrated the biomonomers on their surface in primeval seas during the course of chemical evolution.  相似文献   
2.
The characteristics of nighttime ionospheric scintillations measured at the L-band frequency of 1.575 GHz over Dibrugarh (27.5°N, 95°E, MLAT  17°N, 43° dip) during the ascending half of the solar cycle 24 from 2010 to 2014 have been investigated and the results are presented in this paper. The measurement location is within or outside the zone of influence of the equatorial ionization anomaly depending on solar and geomagnetic activity. Maximum scintillation is observed in the equinoxes irrespective of solar activity with clear asymmetry between March and September. The occurrence frequency in the solstices shifts from minimum in the June solstice in low solar activity to a minimum in the December solstice in high solar activity years. A significant positive correlation of occurrence of scintillations in the June solstice with solar activity has been observed. However, earlier reports from the Indian zone (~75°E) indicate negative or no correlation of scintillation in June solstice with solar activity. Scintillations activity/occurrence in solstices indicates a clear positive correlation with Es recorded simultaneously by a collocated Ionosonde. In equinoxes, maximum scintillations occur in the pre-midnight hours while in solstices the occurrence frequency peaks just after sunset. The incidence of strong scintillations (S4  0.4) increases with increase in solar activity. Strong (S4  0.4) ionospheric scintillations accompanied by TEC depletions in the pre-midnight period is attributed to equatorial irregularities whereas the dusk period scintillations are related to the sporadic-E activity. Present results thus indicate that the current location at the northern edge of the EIA behaves as low as well as mid-latitude location.  相似文献   
3.
The total electron content (TEC) derived from GNSS measurements at a trans-hemispheric meridional chain of ground stations around 95°E longitude are used to study the quiet time inter-hemispheric structure and dynamics of the equatorial ionization anomaly (EIA) during the period March 2015 to February 2016. The stations are Dibrugarh (27.5°N, 95°E, 43° dip), Kohima (25.6°N, 94.1°E, 39° dip), Aizawl (23.7°N, 92.8°E, 36° dip), Port Blair (11.63°N, 92.71°E, 9° dip) and Cocos Islands (12.2°S, 96.8°E, 43° dip). The observation shows that the northern crest of the EIA lies in the south of 23°N (Aizawl) in all seasons but recedes further south towards the equator during December solstice. The largest poleward expansion of the northern (southern) EIA is observed in the March equinox (December solstice). The equinoctial and hemispherical asymmetry of TEC is noted. The winter anomaly is observed in the northern hemisphere but not in the southern hemisphere. The highest midday TEC over any station is observed in the March equinox. The TEC in southern summer (December solstice) is significantly higher than that in the northern summer (June solstice). The observed northern EIA contracts equatorward in the postsunset period of solstice but the southern EIA persists late into the midnight in the December solstice. The asymmetry may be attributed to the different geographic location of the magnetically conjugate stations. The SAMI3 simulations broadly capture the EIA structure and the inter-hemispheric asymmetry during solstices. The difference between observations and the SAMI3 is higher in March equinox and December solstice. The higher E?×?B vertical drift in the 90–100°E sector and the large geographic-geomagnetic offset in observing stations may have contributed to the observed differences.  相似文献   
4.
Two new fourth-order non-singular analytical theories for the motion of near-Earth satellite orbits with air drag are developed for low- and high-eccentricity orbits in an oblate atmosphere with variation of density scale height with altitude. Uniformly regular Kustaanheimo–Stiefel (KS) canonical elements are utilized for low-eccentricity orbits and KS element equations are employed for high-eccentricity orbits. Only two of the nine equations are solved analytically to compute the state vector and change in energy at the end of each revolution, due to symmetry in the equations of motion. The analytical solutions are compared with the numerically integrated values up to 100 revolutions, and found to be quite accurate over a wide range of eccentricity, perigee height and inclination.  相似文献   
5.
The UK civil space strategy for the years 2008–2012 and beyond was published in February 2008. This paper describes the key features of the strategy and highlights those areas that are new or different from the aims set out in previous strategies. In particular, the strategy lays out a new five-part high-level vision for UK civil space.  相似文献   
6.
The measurements of aerosol optical properties were carried out during April 2006 to March 2011 over Mohal (31.9°N, 77.12°E) in the northwestern Indian Himalaya, using the application of ground-based Multi-wavelength Radiometer (MWR) and space-born Moderate Resolution Imaging Spectroradiometer (MODIS) remote sensors. The average (±standard deviation) values of aerosol optical depth (AOD) at 500 nm, Ångström exponent and turbidity coefficient during the entire measurement period were 0.25 ± 0.09, 1.15 ± 0.42 and 0.12 ± 0.06 respectively. About 86% AOD values retrieved from MODIS remote sensor were found within an uncertainty limit (Δτ = ±0.05 ± 0.15τ). In general, the MWR derived AOD values were higher than that of MODIS retrieval with absolute difference ∼0.02. During the entire period of measurement space-born MODIS remote sensor and ground-based MWR observation showed good correspondence with significant correlation coefficient ∼0.78 and root mean square difference ∼0.06. For daily observations the relative difference between these two estimates stood less than 9%. However, satellite-based and ground-based observation showed good correspondence, but further efforts still needed to eliminate systematic errors in the existing MODIS algorithm.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号