首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
航空   1篇
航天技术   5篇
航天   2篇
  2012年   1篇
  2005年   1篇
  2003年   1篇
  1997年   2篇
  1985年   1篇
  1981年   1篇
  1974年   1篇
排序方式: 共有8条查询结果,搜索用时 46 毫秒
1
1.
The patterns of reconnection in the Earth magnetotail and in the solar corona above the active region are presented. The electric field and field-aligned currents (FAC) generation in the current sheet are discussed.  相似文献   
2.
The active geophysical rocket experiment North Star was carried out in the auroral ionosphere on January 22, 1999, at the Poker Flat Research Range (Alaska, USA) using the American research rocket Black Brant XII with explosive plasma generators on board. Separable modules with scientific equipment were located at distances of from 170 to 1595 m from the plasma source. The experiment continued the series of the Russian–American joint experiments started by the Fluxus experiment in 1997. Two injections of aluminum plasma across the magnetic field were conducted in the North Star experiment. They were different, since in the first injection a neutral gas cloud was formed in order to increase the plasma ionization due to the interaction of neutrals of the jet and cloud. The first and second injections were conducted at heights of 360 and 280 km, respectively. The measurements have shown that the charged particle density was two orders of magnitude higher in the experiment with the gas release. The magnetic field in the first injection was completely expelled by the dense plasma of the jet. The displacement of the magnetic field in the second injection was negligible. The plasma jet velocity in both injections decreased gradually due to its interaction with the geomagnetic field. One of the most interesting results of the experiment was the conservation of high plasma density during the propagation of the divergent jet to considerable distances. This fact can be explained by the action of the critical ionization velocity mechanism.  相似文献   
3.
The 2D and 3D numerical simulation is used for the investigation of current sheet (CS) creation above the active region. The current sheet in the solar corona can be created either in vicinity of a magnetic field singular line by focusing disturbances or at the interaction of the super-Alfvenic plasma flow with the perpendicular magnetic field.  相似文献   
4.
Two types of convection were observed in the laboratory model of the magnetosphere: viscous convection and convection due to field lines common to both the magnetosphere and artificial solar wind. With a southward field component in the solar wind, convection from the Sun is observed in the polar cap, while with a large northward component, convection is directed toward the Sun. Merging of the field lines occurs in the cleft. With the southward component, a visor appears in front of the magnetosphere boundary. The decay of the visor into small magnetic structure is observed. The formation of an induced magnetosphere with a magnetic tail is shown in the experiments of the simulated conditions near non-magnetic bodies with a plasma shell (Venus, comets). A combined induced-intrinsic magnetosphere also was investigated.  相似文献   
5.
The potential of the Intercosmos-Bulgaria-1300 (IKB-1300) satellite launched to a circular orbit at an altitude ~900 km was measured with several instruments. Care was taken to equalize the potential along the satellite surface. The satellite was placed inside the conducting screen and the solar cells had a metal coating. The satellite potential slightly varied along the trajectory and in the typical case it was “?2”B that corresponds to 5 kTe/e. While the satellite crossed the auroral zone small-scale fluctuations of plasma and field parameters, known as shocks, were recorded. In this region a sharp decrease of the satellite negative potential is often observed. In this case the potential variations well correlate with the increasing flux of energetic electrons. The observed variations can be explained by secondary electron emission from the satellite surface.  相似文献   
6.
The current sheet (CS) creation before a flare in the vicinity of a singular line above the active region NOAA 10365 is shown in numerical experiments. Such a way the possibility of energy accumulation for a solar flare is demonstrated. These data and results of observation confirm the electrodynamical solar flare model that explains solar flares and CME appearance during CS disruption. The model explains also all phenomena observed in flares. For correct reproduction of the real boundary conditions the magnetic flux between spots should be taken into account. The full system of 3D MHD equations are solved using the PERESVET code. For setting the boundary conditions the method of photospheric magnetic maps is used. Such a method permits to take into account all evolution of photospherical magnetic field during several days before the flare.  相似文献   
7.
One of the major topics of space weather research is to understand auroral structure and the processes that guide, accelerate, and otherwise control particle precipitation and during substorms. The problem is that it is not clear the structure of the magnetic field-aligned electric fields and how they are supported in the magnetospheric plasma. The objective of this research is to study the physical mechanisms of these phenomena in a laboratory experiment. It should be achieved by simulating the charged particle acceleration due to field-aligned electrical field generation in all totality of the interconnected events: generation of a plasma flow, its evolution in the magnetic field, polarization of plasma, generation of the field-aligned currents, development of instabilities in the plasma and current layers, double layers or anomalous resistance regions appearance, electron acceleration. Parameters of the laboratory simulation and preliminary results of the experiment are discussed.  相似文献   
8.
The penetration of fast electrons ( 5 keV) into an artificial magnetosphere and their precipitation on the terrella surface is investigated. These fast electrons act as radioactive tracers allowing the experimental determination of the global picture of plasma flow around the magnetosphere and its intrusion into the latter. Two different zones of precipitation are observed, distinctly separated on the day-side and merging into each other on the night-side. The high latitude penetration region on the day-side is not localized around the neutral points, but is stretched in longitude forming polar cusps toward dusk and dawn. The lower latitude precipitation zone, embracing the whole terrella is due to the particle precipitation from a radiation belt formed in this experiment. The source of these belt particles seems to be located in the plasmasheet on the night side. Besides the polar cusps, a plasma intrusion from the sides of the magnetosphere in the equatorial region is observed. This equatorial gap, originating on the day-side, is gradually transformed into the plasmasheet in the magnetospheric tail. On the basis of these experimental data a model of the magnetosphere is discussed.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号