首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   1篇
航空   2篇
航天技术   2篇
航天   1篇
  2007年   2篇
  1999年   1篇
  1998年   1篇
  1991年   1篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
The aim of the proposed Beagle 2 small lander for ESA's 2003 Mars Express mission is to search for organic material on and below the surface of Mars and to study the inorganic chemistry and mineralogy of the landing site. The lander will have a total mass of 60kg including entry, descent, and landing system. Experiments will be deployed on the surface using a robotic arm. It will use a mechanical mole and grinder to obtain samples from below the surface, under rocks, and inside rocks. Sample analysis by a mass spectrometer will include isotopic analysis. An optical microscope, an X-ray spectrometer and a Mossbauer spectrometer will conduct in-situ rock studies.  相似文献   
2.
本文利用1994年和1996年两次返回式卫星的搭载条件对舱内辐射剂量进行了对比测量.通过对比测量,研究不同掺杂、不同厚度LiF剂量计测量空间辐射剂量的特点;研究GM计数管计数和LiF剂量间的转换系数以及转换系数随屏蔽状况的变化;由剂量和GM计数研究粒子平均碰撞阻止本领的估计方法.结果表明,不同掺杂、不同厚度的LiF剂量计测量结果间无显著差异,而转换系数几乎不受舱内位置和屏蔽状态的影响.不同厚度LiF剂量计,不同屏蔽状态的GM计数管计数和剂量—计数转换系数的比较研究以及对粒子平均碰撞阻止本领的估计表明,舱内辐射剂量起决定作用的是高能粒子成分,其平均碰撞阻止本领估计约为5MeV/cm.  相似文献   
3.
Nitrogen isotopes have played an important part in the acceptance of the hypothesis that SNC meteorites derive from Mars. As a result, these meteorites can be investigated for their carbon, sulphur, and hydrogen systematics with a view to learning something about the environmental conditions on the planet. Important aspects of the role of carbon, present in the form of carbon dioxide as an atmospheric gas and leading to the formation of carbonates by weathering or hydrothermal activity, can be established. The presence of indigenous organics is an intriguing possibility. A variety of new or emerging techniques which could improve our understanding of SNC meteorites and might be applied to a returned Martian sample are discussed.  相似文献   
4.
We launched a cryptoendolithic habitat, made of a gneissic impactite inoculated with Chroococcidiopsis sp., into Earth orbit. After orbiting the Earth for 16 days, the rock entered the Earth's atmosphere and was recovered in Kazakhstan. The heat of entry ablated and heated the rock to a temperature well above the upper temperature limit for life to below the depth at which light levels are insufficient for photosynthetic organisms ( approximately 5 mm), thus killing all of its photosynthetic inhabitants. This experiment shows that atmospheric transit acts as a strong biogeographical dispersal filter to the interplanetary transfer of photosynthesis. Following atmospheric entry we found that a transparent, glassy fusion crust had formed on the outside of the rock. Re-inoculated Chroococcidiopsis grew preferentially under the fusion crust in the relatively unaltered gneiss beneath. Organisms under the fusion grew approximately twice as fast as the organisms on the control rock. Thus, the biologically destructive effects of atmospheric transit can generate entirely novel and improved endolithic habitats for organisms on the destination planetary body that survive the dispersal filter. The experiment advances our understanding of how island biogeography works on the interplanetary scale.  相似文献   
5.
A fundamental goal of cometary studies is to determine the exact relationship between these bodies and the Solar System – the question(s) can be summarised as follows: did comets originate during the same events that spawned the Sun and planets, are they more primitive bodies that record a pre-solar history, or are they interstellar materials collected in relatively more recent times? Now, whatever the origin of comets, it is entirely possible that they could, in part, contain interstellar or pre-solar components – indeed, it seems rather likely in light of the fact that primitive meteorites contain such entities. These particular components are likely to be refractory (dust, macromolecular organic complexes, etc.). Of more relevance to the issues above are the volatile constituents, which make up the bulk of a comet's mass. Since these materials, by their very nature, volatilise during perihelion passage of a comet they can, in some instances, be detected and measured spectroscopically. Perhaps the most useful species for isotopic investigations are C2, HCN and CN. Unfortunately, spectroscopic measurements can only currently be made with accuracies of ±10 to ±20%. As such it is very often not practical to conclude anything further than the fact that isotopic measurements are compatible with ‘`solar’' values, which tends to imply an origin from the margins of the solar accretion disk. But there is another problem with the spectroscopic measurements – since these are made on gaseous species in the coma (and relatively minor species at that) it is impossible to be certain that these represent the true nuclear values. In other words, if the processes of sublimation, active jetting, and photochemistry in the coma impart isotopic fractionation, the spectroscopic measurements could give a false impression of the true isotope ratios. What is required is an experiment capable of measuring isotopic ratios at the very surface of a comet. Herein we describe the Ptolemy instrument, which is included on the Philae lander as part of the Rosetta mission to 67P/Churyumov-Gerasimenko. The major objective of Ptolemy is a detailed appraisal of the nature and isotopic compositions of all materials present at the surface of a comet.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号