首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
航空   4篇
航天   1篇
  2009年   3篇
  2006年   1篇
  2003年   1篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
2.
Bezrukikh  V. V.  Kotova  G. A.  Lezhen  L. A.  Lemaire  J.  Pierrard  V.  Venediktov  Yu. I. 《Cosmic Research》2003,41(4):392-402
We present the results of temperature and density measurement of plasmaspheric protons under quiet and disturbed conditions in the night and dayside sectors of the plasmasphere obtained with the Auroral Probe/Alpha-3 instrument during September 1996 and January 1997. According to the experimental data, the proton temperature in the night sector of the plasmasphere depends on the level of geomagnetic disturbance: it is found that at night hours the values of temperatures inside the plasmasphere at 2.4 < L < 3.5 decreased considerably after the commencement of a geomagnetic storm. The temperature decrease, as a rule, was accompanied by the formation of a flat plateau on the density distribution n(L) at 2.4 < L < 3.5. The above experimental facts (decreasing proton temperature and formation of a flat part on the n(L) distribution) allow us to conclude that the decrease in the proton temperature in the night sector of the plasmasphere connected with magnetic disturbances is caused by the filling of field tubes (depleted after the commencement of the storm) with colder ionospheric plasma. The proton temperature in the dayside sector of the plasmasphere virtually does not depend on the level of the geomagnetic disturbance.  相似文献   
3.
Dynamical simulations have been developed at IASB-BIRA to model the deformations of the plasmasphere during geomagnetic substorms and other variations in the level of geomagnetic activity. The simulations are based on the mechanism of plasma instability and use the empirical Kp-dependent electric field E5D. The results of the simulations are compared with IMAGE observations that provide the first global comprehensive images of the Earth’s plasmasphere. The predicted plasmapause positions correspond generally rather satisfactorily with the EUV observations. The plasmasphere is rather extended in all MLT sectors during quiet periods. During or just after geomagnetic substorms, the plasmaspause is sharper and becomes closer to the Earth in the night sector. Periods of enhanced geomagnetic activity are associated to the formation of plumes that rotate with the plasmasphere. The simulations reproduce the formation and the motion of these plumes, as well as the development of other structures like shoulders observed at the plasmapause by EUV on IMAGE.  相似文献   
4.
We describe recent progress in physics-based models of the plasmasphere using the fluid and the kinetic approaches. Global modeling of the dynamics and influence of the plasmasphere is presented. Results from global plasmasphere simulations are used to understand and quantify (i) the electric potential pattern and evolution during geomagnetic storms, and (ii) the influence of the plasmasphere on the excitation of electromagnetic ion cyclotron (EMIC) waves and precipitation of energetic ions in the inner magnetosphere. The interactions of the plasmasphere with the ionosphere and the other regions of the magnetosphere are pointed out. We show the results of simulations for the formation of the plasmapause and discuss the influence of plasmaspheric wind and of ultra low frequency (ULF) waves for transport of plasmaspheric material. Theoretical models used to describe the electric field and plasma distribution in the plasmasphere are presented. Model predictions are compared to recent Cluster and Image observations, but also to results of earlier models and satellite observations.  相似文献   
5.
Empirical models for the plasma densities in the inner magnetosphere, including plasmasphere and polar magnetosphere, have been in the past derived from in situ measurements. Such empirical models, however, are still in their initial phase compared to magnetospheric magnetic field models. Recent studies using data from CRRES, Polar, and Image have significantly improved empirical models for inner-magnetospheric plasma and mass densities. Comprehensive electric field models in the magnetosphere have been developed using radar and in situ observations at low altitude orbits. To use these models at high altitudes one needs to rely strongly on the assumption of equipotential magnetic field lines. Direct measurements of the electric field by the Cluster mission have been used to derive an equatorial electric field model in which reliance on the equipotential assumption is less. In this paper we review the recent progress in developing empirical models of plasma densities and electric fields in the inner magnetosphere with emphasis on the achievements from the Image and Cluster missions. Recent results from other satellites are also discussed when they are relevant.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号