首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
航空   1篇
航天技术   2篇
航天   3篇
  2010年   1篇
  2008年   2篇
  1983年   1篇
  1980年   1篇
  1979年   1篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
This paper describes a concept of multibeam high capacity transmission possible with a 30/20 GHz and 50/40 GHz domestic satellite communication system. The relationship between satellite antenna pointing accuracy and multi-beam antenna interference, as well as the relationship between satellite antenna pointing accuracy and multi-satellite interference are looked at.The ultra high capacity domestic satellite communication system will have multi-beam antennas with a 76.0 dB at both 20 GHz and 40 GHz. These antennas will provide 4950 beams that approximately correspond to the number of end office of the Japanese telephone network, and have a pointing accuracy of 0.005 degrees. This system will be equipped with 9900 30/20 GHz and 50/40 GHz transponder channels with bit rates of 800 Mbps. Its capacity will be 119 Tbps through use of 15 large communication satellite platforms.  相似文献   
2.
The problem of remote sensing of precipitation by a satellite-borne microwave rain scatterometer is discussed. A downward-looking scanning pencil-beam antenna system is used. The combination of the range-gate method and low side lobe level is used to separate echoes from precipitation layers in the main lobe from ground clutter in the side lobes. Various parameters of the satellite-borne microwave rain scatterometer are calculated and characteristics of systems at 10 and 34.45 GHz are considered. The transmitter peak power needed to observe precipitation with sufficient signal-to noise ratio is calculated by means of the radar equation. The signal (i.e. the received power from the resolution volume of the precipitation) and the received power due to the ground clutter are calculated and the signal-to-clutter ratio is obtained by applying the radar equation. An airborne microwave rain scatterometer is proposed for preliminary experiments.  相似文献   
3.
The advent of the grating spectrometers onboard Chandra and XMM-Newton opened up a new era in plasma diagnostics of compact binaries. High resolution spectroscopy using these spectrometers is of particular use in investigating accretion plasmas in cataclysmic variables (CVs) because they show a wealth of emission lines owing to their optically thin thermal nature. In this review, I present recent progress on density measurements of the plasma in magnetic CVs by means of He-like triplet and iron L lines, and the outcome of line velocity measurements in the dwarf nova SS Cygni in outburst, to demonstrate the potential power of high resolution spectroscopy to elucidate the geometry of the plasma. In the end, our expectations for the Soft X-ray Spectrometer onboard the forthcoming X-ray mission Astro-H are summarized.  相似文献   
4.
Although rotating neutron stars (NSs) have been regarded as being textbook examples of astrophysical particle acceleration sites for decades, details of the acceleration mechanism remain a mystery; for example, we cannot yet observationally distinguish “polar cap” models from “outer gap” models. To solve the model degeneracy, it is useful to study similar systems with much different physical parameters. Strongly magnetized white dwarfs (WDs) are ideal for this purpose, because they have essentially the same system geometry as NSs, but differ largely from NSs in the system parameters, including the size, magnetic field, and the rotation velocity, with the induced electric field expected to reach 1013–1014 eV. Based on this idea, the best candidate among WDs, AE Aquarii, was observed with the fifth Japaneses X-ray satellite, Suzaku. The hard X-ray detector (HXD) on-board Suzaku has the highest sensitivity in the hard X-ray band over 10 keV. A marginal detection in the hard X-ray band was achieved with the HXD, and was separated from the thermal emission. The flux corresponds to about 0.02% of its spin-down energy. If the signal is real, this observation must be a first case of the detection of non-thermal emission from WDs.  相似文献   
5.
6.
The first Japanese geostationary satellite, Engineering Test Satellite Type II [Kiku-2], has been successfully placed at 130°E at the beginning of March 1977.Using beacon transmitters at three coherent frequencies of 1.7, 11.5 and 34.5 GHz which are installed in ETS-II, the Radio Research Laboratories (RRL) of the Ministry of Posts and Telecommunications (MOPT) conduct propagation experiments to obtain preliminary information for the Experimental Communication Satellite (ECS) experiment.The experimental system for propagation experiment with ETS-II is composed of a main receiving station, a rain radar, a radio-meter, meteorological instruments and data handling computers.The receiving data, including signal levels of co- and cross-polarization in these frequencies and phase differences between each of these frequencies and polarization, are sampled every 200 msec.The satellite-to-Earth propagation experiment at the highest frequency has been satisfactorily started on 11 March 1977.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号