首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
航空   1篇
航天   1篇
  2016年   1篇
  2000年   1篇
排序方式: 共有2条查询结果,搜索用时 203 毫秒
1
1.
Previous research suggested that performance in spatial judgments involving rotated human figures is poorer if these figures are presented from the front than from the back. We further investigated this effect, controlling for visible facial information in front and back view by presenting figures' faces as profile. Children's and adults' judgments were still faster and less error prone if figures were presented from the back. Moreover, reaction times indicated that participants did not mentally rotate figures in front view. Children performed overall more poorly than adults, but there were also qualitative differences suggesting that children are more susceptible to embodiment effects than adults. This study underlines that embodiment may have differential effects in spatial transformation tasks, enhancing or impairing performance.  相似文献   
2.
Cosmic Rays in Relation to Space Weather   总被引:5,自引:0,他引:5  
A review of selected experimental results relevant for the use of cosmic ray records in Space Weather research is presented. Interplanetary perturbations, initiated in the solar atmosphere, affect galactic cosmic rays. In some cases their influence on the cosmic ray intensity results in data signatures that can possibly be used to predict geomagnetic storm onsets. Case studies illustrating the complexity of the cosmic ray effects and related geomagnetic activity precursors are discussed. It is shown that some indices for cosmic ray activity are good tools for testing the reliability of cosmic ray characteristics for Space Weather forecasts. A brief summary of the influence of cosmic rays on the ozone layer is also given. The use of cosmic ray data for Space Weather purposes is still in its infant stage, but suggestions for both case and statistical studies are made. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号