首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
航空   1篇
航天技术   2篇
航天   5篇
  2018年   2篇
  2012年   1篇
  2010年   1篇
  2008年   1篇
  2007年   1篇
  2004年   1篇
  1987年   1篇
排序方式: 共有8条查询结果,搜索用时 46 毫秒
1
1.
Hage MM  Uhle ME  Macko S 《Astrobiology》2007,7(4):645-661
Small coastal ponds that contain photosynthetic microbial mat communities represent an extreme environment where a potentially significant source of labile organic carbon can be found within the McMurdo Dry Valleys, Antarctica. To distinguish coastal pond-derived organic matter from other sources of organic matter in the Dry Valleys, bulk organic carbon, nitrogen, and sulfur isotope signatures and phospholipid fatty acid (PLFA) profiles of benthic microbial mats located at two sites--Hjorth Hill coast and Garwood Valley--were investigated. The average isotope values at Hjorth Hill coast and Garwood Valley are, respectively, -10.9 per thousand and -10.2 per thousand for delta(13) C, 3.7 per thousand and -1.3 per thousand for delta(15)N, and 8.1 per thousand and 16.7 per thousand for delta(34)S. Microbial mats from all ponds are dominated by monounsaturated PLFAs (indicative of Gram-negative bacteria) and polyunsaturated PLFAs (indicative of microeukaryotes). Biomarkers specific to aerobic prokaryotes, eukaryotes, and photoautotrophic microeukaryotes, as well as sulfur-reducing bacteria, are present in all samples. Benthic mats at Garwood Valley are thicker and more laminated, have a higher biomass, and have a greater carbon and nitrogen content, which suggests greater productivity than mats at Hjorth Hill coast. Greater productivity is supported, as well, by higher dissolved oxygen contents likely derived from heightened photosynthetic productivity. More productivity at Garwood Valley likely results from a larger influx of terrestrial surface waters together with a concomitant nutrient loading.  相似文献   
2.
An organic haze layer in the upper atmosphere of Titan plays a crucial role in the atmospheric composition and climate of that moon. Such a haze layer may also have existed on the early Earth, providing an ultraviolet shield for greenhouse gases needed to warm the planet enough for life to arise and evolve. Despite the implications of such a haze layer, little is known about the organic material produced under early Earth conditions when both CO(2) and CH(4) may have been abundant in the atmosphere. For the first time, we experimentally demonstrate that organic haze can be generated in different CH(4)/CO(2) ratios. Here, we show that haze aerosols are able to form at CH(4) mixing ratios of 1,000 ppmv, a level likely to be present on early Earth. In addition, we find that organic hazes will form at C/O ratios as low as 0.6, which is lower than the predicted value of unity. We also show that as the C/O ratio decreases, the organic particles produced are more oxidized and contain biologically labile compounds. After life arose, the haze may thus have provided food for biota.  相似文献   
3.
Nitrile incorporation into Titan aerosol accompanying hydrocarbon chemistry is thought to be driven by extreme UV wavelengths (λ<120?nm) or magnetospheric electrons in the outer reaches of the atmosphere. Far UV radiation (120-200?nm), which is transmitted down to the stratosphere of Titan, is expected to affect hydrocarbon chemistry only and not initiate the formation of nitrogenated species. We examined the chemical properties of photochemical aerosol produced at far UV wavelengths, using a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS), which allows for elemental analysis of particle-phase products. Our results show that aerosol formed from CH(4)/N(2) photochemistry contains a surprising amount of nitrogen, up to 16% by mass, a result of photolysis in the far UV. The proportion of nitrogenated organics to hydrocarbon species is shown to be correlated with that of N(2) in the irradiated gas. The aerosol mass greatly decreases when N(2) is removed, which indicates that N(2) plays a major role in aerosol production. Because direct dissociation of N(2) is highly improbable given the immeasurably low cross section at the wavelengths studied, the chemical activation of N(2) must occur via another pathway. Any chemical activation of N(2) at wavelengths >120?nm is presently unaccounted for in atmospheric photochemical models. We suggest that reaction with CH radicals produced from CH(4) photolysis may provide a mechanism for incorporating N into the molecular structure of the aerosol. Further work is needed to understand the chemistry involved, as these processes may have significant implications for how we view prebiotic chemistry on early Earth and similar planets.  相似文献   
4.
5.
Despite the numerous modeling efforts of the past, our knowledge on the radiation-induced physical and chemical processes in Europa’s tenuous atmosphere and on the exchange of material between the moon’s surface and Jupiter’s magnetosphere remains limited. In lack of an adequate number of in situ observations, the existence of a wide variety of models based on different scenarios and considerations has resulted in a fragmentary understanding of the interactions of the magnetospheric ion population with both the moon’s icy surface and neutral gas envelope. Models show large discrepancy in the source and loss rates of the different constituents as well as in the determination of the spatial distribution of the atmosphere and its variation with time. The existence of several models based on very different approaches highlights the need of a detailed comparison among them with the final goal of developing a unified model of Europa’s tenuous atmosphere. The availability to the science community of such a model could be of particular interest in view of the planning of the future mission observations (e.g., ESA’s JUpiter ICy moons Explorer (JUICE) mission, and NASA’s Europa Clipper mission). We review the existing models of Europa’s tenuous atmosphere and discuss each of their derived characteristics of the neutral environment. We also discuss discrepancies among different models and the assumptions of the plasma environment in the vicinity of Europa. A summary of the existing observations of both the neutral and the plasma environments at Europa is also presented. The characteristics of a global unified model of the tenuous atmosphere are, then, discussed. Finally, we identify needed future experimental work in laboratories and propose some suitable observation strategies for upcoming missions.  相似文献   
6.
The presence of sulfur mass-independent fractionation (S-MIF) in sediments more than 2.45?×?10(9) years old is thought to be evidence for an early anoxic atmosphere. Photolysis of sulfur dioxide (SO(2)) by UV light with λ?相似文献   
7.
This study employed an information accumulation model of choice reaction times to investigate alignment effects in mental representations of maps. University students studied a map from a single orientation (with north at the top). In a subsequent two-choice reaction time task, the students’ spatial knowledge of the map was assessed employing spatial left/right judgments, which were made from imagined perspectives that were either north-aligned or south-aligned. Data showed a standard alignment effect, favoring north- over south-aligned trials. To examine the locus of this effect, data were fit using the Linear Ballistic Accumulator (LBA) model of speeded decisions (Brown & Heathcote, 2008). Of interest were three model parameters: drift rate, the speed at which evidence accumulates toward a response; response threshold, the amount of evidence demanded from the decision maker before selecting a response; and non-decision time, the time consumed by pre- and postdecisional processes. The best-fitting model suggested that non-decision time accounted for the alignment effect. The difference in non-decision time between north and south-aligned judgments suggests a mental alignment stage on south-aligned trials, accounting for the longer reaction times for judgements misaligned with the presented north orientation of the map.  相似文献   
8.
NASA’s Biomass Production Chamber (BPC) at Kennedy Space Center was decommissioned in 1998, but several crop tests were conducted that have not been reported in the open literature. These include several monoculture studies with wheat, soybean, potato, lettuce, and tomato. For all of these studies, either 10 or 20 m2 of plants were grown in an atmospherically closed chamber (113 m3 vol.) using a hydroponic nutrient film technique along with elevated CO2 (1000 or 1200 μmol mol−1). Canopy light (PAR) levels ranged from 17 to 85 mol m−2 d−1 depending on the species and photoperiod. Total biomass (DM) productivities reached 39.6 g m−2 d−1 for wheat, 27.2 g m−2 d−1 for potato, 19.6 g m−2 d−1 for tomato, 15.7 g m−2 d−1 for soybean, and 7.7 g m−2 d−1 for lettuce. Edible biomass (DM) productivities reached 18.4 g m−2 d−1 for potato, 11.3 g m−2 d−1 for wheat, 9.8 g m−2 d−1 for tomato, 7.1 g m−2 d−1 for lettuce, and 6.0 g m−2 d−1 for soybean. The corresponding radiation (light) use efficiencies for total biomass were 0.64 g mol−1 PAR for potato, 0.59 g DM mol−1 for wheat, 0.51 g mol−1 for tomato, 0.46 g mol−1 for lettuce, and 0.43 g mol−1 for soybean. Radiation use efficiencies for edible biomass were 0.44 g mol−1 for potato, 0.42 g mol−1 for lettuce, 0.25 g mol−1 for tomato, 0.17 g DM mol−1 for wheat, and 0.16 g mol−1 for soybean. By initially growing seedlings at a dense spacing and then transplanting them to the final production area could have saved about 12 d in each production cycle, and hence improved edible biomass productivities and radiation use efficiencies by 66% for lettuce (to 11.8 g m−2 d−1 and 0.70 g mol−1), 16% for tomato (to 11.4 g m−2 d−1and 0.29 g mol−1), 13% for soybean (to 6.9 g m−2 d−1 and 0.19 g mol−1), and 13% for potato (to 20.8 g m−2 d−1 and 0.50 g mol−1). Since wheat was grown at higher densities, transplanting seedlings would not have improved yields. Tests with wheat resulted in a relatively low harvest index of 29%, which may have been caused by ethylene or other organic volatile compounds (VOCs) accumulating in the chamber. Assuming a higher harvest index of 40% could be achieved by scrubbing VOCs, productivity of wheat seed could have been improved nearly 40% to 15.8 g m−2 d−1 and edible biomass radiation use efficiency to 0.30 g mol−1.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号