首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   281篇
  免费   1篇
  国内免费   2篇
航空   125篇
航天技术   58篇
综合类   2篇
航天   99篇
  2021年   7篇
  2020年   4篇
  2019年   4篇
  2018年   9篇
  2017年   10篇
  2016年   2篇
  2015年   3篇
  2014年   6篇
  2013年   11篇
  2012年   12篇
  2011年   21篇
  2010年   11篇
  2009年   23篇
  2008年   10篇
  2007年   16篇
  2006年   9篇
  2005年   11篇
  2004年   8篇
  2003年   9篇
  2002年   6篇
  2001年   6篇
  2000年   4篇
  1999年   1篇
  1998年   8篇
  1997年   2篇
  1996年   5篇
  1995年   3篇
  1993年   2篇
  1992年   6篇
  1991年   2篇
  1987年   4篇
  1986年   3篇
  1985年   5篇
  1984年   1篇
  1983年   3篇
  1982年   3篇
  1981年   4篇
  1980年   2篇
  1979年   1篇
  1977年   1篇
  1975年   1篇
  1974年   2篇
  1973年   1篇
  1972年   1篇
  1970年   1篇
  1969年   3篇
  1968年   4篇
  1967年   8篇
  1966年   5篇
排序方式: 共有284条查询结果,搜索用时 62 毫秒
1.
de Vuyst  Tom  Vignjevic  Rade  Bourne  Neil K.  Campbell  James 《Space Debris》2000,2(4):225-232
Spall caused by hypervelocity impacts at the lower range of velocities could result in significant damage to spacecraft. A number of polycrystalline alloys, used in spacecraft manufacturing, exhibit a pronounced anisotropy in their mechanical properties. The aluminium alloy AA 7010, whose orthotropy is a consequence of the meso-scale phase distribution or grain morphology, has been chosen for this investigation. The material failure observed in plate impact was simulated using a number of spall models. The Hugoniot elastic limit and spall strength have been studied as a function of orientation, and compared to experimental results.  相似文献   
2.
Generating requirements for complex embedded systems using State Analysis   总被引:3,自引:0,他引:3  
It has become clear that spacecraft system complexity is reaching a threshold where customary methods of control are no longer affordable or sufficiently reliable. At the heart of this problem are the conventional approaches to systems and software engineering based on subsystem-level functional decomposition, which fail to scale in the tangled web of interactions typically encountered in complex spacecraft designs. Furthermore, there is a fundamental gap between the requirements on software specified by systems engineers and the implementation of these requirements by software engineers. Software engineers must perform the translation of requirements into software code, hoping to accurately capture the systems engineer's understanding of the system behavior, which is not always explicitly specified. This gap opens up the possibility for misinterpretation of the systems engineer's intent, potentially leading to software errors. This problem is addressed by a systems engineering methodology called State Analysis, which provides a process for capturing system and software requirements in the form of explicit models. This paper describes how requirements for complex aerospace systems can be developed using State Analysis, using representative spacecraft examples.  相似文献   
3.
The Active Rack Isolation System [ARIS] International Space Station [ISS] Characterization Experiment, or ARIS-ICE for short, is a long duration microgravity characterization experiment aboard the ISS. The objective of the experiment is to fully characterize active microgravity performance of the first ARIS rack deployed on the ISS. Efficient ground and on-orbit command and data handling [C&DH] segments are the crux in achieving the challenging objectives of the mission. The objective of the paper is to provide an overview of the C&DH architectures developed for ARIS-ICE, with the view that these architectures may serve as a model for future ISS microgravity payloads. Both ground and on-orbit segments, and their interaction with corresponding ISS C&DH systems are presented. The heart of the on-orbit segment is the ARIS-ICE Payload On-orbit Processor, ARIS-ICE POP for short. The POP manages communication with the ISS C&DH system and other ISS subsystems and payloads, enables automation of test/data collection sequences, and provides a wide range of utilities such as efficient file downlinks/uplinks, data post-processing, data compression and data storage. The hardware and software architecture of the POP is presented and it is shown that the built-in functionality helps to dramatically streamline the efficiency of on-orbit operations. The ground segment has at its heart special ARIS-ICE Ground Support Equipment [GSE] software developed for the experiment. The software enables efficient command and file uplinks, and reconstruction and display of science telemetry packets. The GSE software architecture is discussed along with its interactions with ISS ground C&DH elements. A test sequence example is used to demonstrate the interplay between the ground and on-orbit segments.  相似文献   
4.
We present the results of an experimental study of aqueous corrosion of Fe-phosphide under conditions relevant to the early Earth. The results strongly suggest that iron meteorites were an important source of reactive phosphorus (P), a requirement for the formation of P-based life. We further demonstrate that iron meteorites were an abundant source of phosphide minerals early in Earth history. Phosphide corrosion was studied in five different solutions: deionized water, deionized water buffered with sodium bicarbonate, deionized water with dissolved magnesium and calcium chlorides, deionized water containing ethanol and acetic acid, and deionized water containing the chlorides, ethanol, and acetic acid. Experiments were performed in the presence of both air and pure Ar gas to evaluate the effect of atmospheric chemistry. Phosphide corrosion in deionized water results in a metastable mixture of mixed-valence, P-bearing ions including pyrophosphate and triphosphate, key components for metabolism in modern life. In a pH-buffered solution of NaHCO(3), the condensed and reduced species diphosphonate is an abundant corrosion product. Corrosion in ethanol- and acetic acid-containing solutions yields additional P-bearing organic molecules, including acetyl phosphonate and a cyclic triphosphorus molecule. Phosphonate is a major corrosion product of all experiments and is the only P-bearing molecule that persists in solutions with high concentrations of magnesium and calcium chlorides, which suggests that phosphonate may have been a primitive oceanic source of P. The stability and reactivity of phosphonate and hypophosphite in solution were investigated to elucidate reaction mechanisms and the role of mineral catalysts on P-solution chemistry. Phosphonate oxidation is rapid in the presence of Fe metal but negligible in the presence of magnetite and in the control sample. The rate of hypophosphite oxidation is independent of reaction substrate.  相似文献   
5.
The major goals of NASA's Terrestrial Planet Finder (TPF) and the European Space Agency's Darwin missions are to detect terrestrial-sized extrasolar planets directly and to seek spectroscopic evidence of habitable conditions and life. Here we recommend wavelength ranges and spectral features for these missions. We assess known spectroscopic molecular band features of Earth, Venus, and Mars in the context of putative extrasolar analogs. The preferred wavelength ranges are 7-25 microns in the mid-IR and 0.5 to approximately 1.1 microns in the visible to near-IR. Detection of O2 or its photolytic product O3 merits highest priority. Liquid H2O is not a bioindicator, but it is considered essential to life. Substantial CO2 indicates an atmosphere and oxidation state typical of a terrestrial planet. Abundant CH4 might require a biological source, yet abundant CH4 also can arise from a crust and upper mantle more reduced than that of Earth. The range of characteristics of extrasolar rocky planets might far exceed that of the Solar System. Planetary size and mass are very important indicators of habitability and can be estimated in the mid-IR and potentially also in the visible to near-IR. Additional spectroscopic features merit study, for example, features created by other biosignature compounds in the atmosphere or on the surface and features due to Rayleigh scattering. In summary, we find that both the mid-IR and the visible to near-IR wavelength ranges offer valuable information regarding biosignatures and planetary properties; therefore both merit serious scientific consideration for TPF and Darwin.  相似文献   
6.
Bacterial spores have been used as model systems for studying the theory of interplanetary transport of life by natural processes such as asteroidal or cometary impacts (i.e., lithopanspermia). Because current spallation theory predicts that near-surface rocks are ideal candidates for planetary ejection and surface basalts are widely distributed throughout the rocky planets, we isolated spore-forming bacteria from the interior of near-subsurface basalt rocks collected in the Sonoran desert near Tucson, Arizona. Spores were found to inhabit basalt at very low concentrations (相似文献   
7.
In the 36 years between June 1965 and February 2001, the US human space flight program has conducted 100 spacewalks, or extravehicular activities (EVAs), as NASA officially calls them. EVA occurs when astronauts wearing spacesuits travel outside their protective spacecraft to perform tasks in the space vacuum environment. US EVA started with pioneering feasibility tests during the Gemini Program. The Apollo Program required sending astronauts to the moon and performing EVA to explore the lunar surface. EVA supported scientific mission objectives of the Skylab program, but may be best remembered for repairing launch damage to the vehicle and thus saving the program. EVA capability on Shuttle was initially planned to be a kit that could be flown at will, and was primarily intended for coping with vehicle return emergencies. The Skylab emergency and the pivotal role of EVA in salvaging that program quickly promoted Shuttle EVA to an essential element for achieving mission objectives, including retrieving satellites and developing techniques to assemble and maintain the International Space Station (ISS). Now, EVA is supporting assembly of ISS. This paper highlights development of US EVA capability within the context of the overarching mission objectives of the US human space flight program.  相似文献   
8.
Evolutionary algorithms are applied to the optimization of pulse repetition frequency (PRF), for both eight-and nine PRFs, in medium PRF radar while considering the detailed effects of sidelobe clutter and many other technical factors. The algorithm presented also ensures that all the solutions produced are fully decodable and have no blind velocities. The evolutionary algorithm was able to identify near-optimum PRF sets for a realistic radar system with only a modest computational effort.  相似文献   
9.
The physical parameters that influence the photometric and polarimetric properties of a solid are enumerated and used to guide a comparison of laboratory measurements with observations of Mars. Both the bright and dark areas of Mars are found to be covered by a fine powder. Furthermore, they appear to have a very similar chemical composition. It is argued that goethite is a major constituent of both regions. The particles on the bright areas are characterized by an average particle radius of 25 , while those on the dark areas have a mean size of 100 outside of the period of seasonal darkening and about 200 near the peak of the darkening. The seasonal darkening of the dark areas is the result of a change in the average particle dimension without an accompanying chemical change.The Martian atmosphere has much less of an influence on the photometric and polarimetric observations than was previously supposed. The observed lack of contrast in the blue appears to be largely the result of an intrinsic loss of surface contrast, and not an effect of a hypothetical atmospheric blue haze.
Résumé Les paramètres physiques qui influencent les propriétés photométriques et polarimétriques d'un solide sont énumérés et utilisés pour conduire une comparaison entre des mesures de laboratoire et des observations de Mars. On trouve que les régions brillantes et les régions sombres de Mars sont couvertes d'une fine poudre. En outre, elles paraissent avoir des compositions chimiques très semblables. Il est soutenu que la goethite est un constituant majeur des deux régions. Les particules des régions brillantes sont caractérisées par un rayon moyen de 25 , tandis que celles des régions sombres ont une taille moyenne de 100 en dehors de la période d'assombrissement saisonnier, et d'environ 200 près du maximum d'assombrissement. L'assombrissement saisonnier des régions sombres est le résultat d'une variation de la dimension moyenne des particules, non accompagné d'un changement chimique.L'influence de l'atmosphère Martienne sur les observations photométriques et polarimétriques est bien inférieure à ce qui était supposé antérieurement. Le manque de contraste que l'on observe dans le bleu, parait être principalement une conséquencede la perte de contraste de surface, et non pas un effet d'un hypothétique halo atmosphérique bleu.


This work was supported in part by grants NGR-09-015-023 and NGR-33-010-082 from the National Aeronautics and Space Administration. A preliminary account was published as Smithsonian Astrophysical Observatory Special Report 258 (1967). This paper is dedicated to the memory of V. V. Sharonov.  相似文献   
10.
Light scattering in planetary atmospheres   总被引:45,自引:0,他引:45  
This paper reviews scattering theory required for analysis of light reflected by planetary atmospheres. Section 1 defines the radiative quantities which are observed. Section 2 demonstrates the dependence of single-scattered radiation on the physical properties of the scatterers. Section 3 describes several methods to compute the effects of multiple scattering on the reflected light.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号