首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
航空   2篇
航天技术   2篇
航天   1篇
  2018年   1篇
  2010年   1篇
  1997年   1篇
  1975年   1篇
  1970年   1篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
2.
Missions in space within the next two decades will be of longer duration than those carried out up to the present time, and the effects of such long-term flights on biological organisms are unknown. Results of biological experiments that have been performed to date cannot be extrapolated to results in future flights because of the unknown influence of adaptation over a long period of time. Prior experiments with Axolotl, fishes, and vertebrates by our research team (in part with sounding rockets) showed that these specimens did not appear to be suitable for long-term missions on which minimization of expense, technique, and energy is required. Subsequent investigations have shown the suitability of the leech (Hirudo medicinalis), which consumes blood of mammals up to ten times its own weight (1 g) and can live more than 2 years without further food supply. Emphasis in the experiments with Hirudo medicinalis is placed on metabolic rhythm and motility. Resorption and diffusion in tissue, development, and growth under long-term effects of cosmic proton radiation and zero-gravity are other focal points. The constancy of cellular life in the mature animals is a point in favor of these specimens. We have also taken into account the synergistic effects of the space environment on the problems just mentioned. The life-support system constructed for the leech has been tested successfully in four sounding rocket flights and, on that basis, has been prepared for a long-term mission. Long-term investigations out of the terrestrial biosphere will provide us with information concerning the degree of adaptation of certain physiological and biochemical functions and as to what extent biological readjustment or repair processes can occur under the specific stress conditions of space flight.  相似文献   
3.
The consequences of the interaction between the solar wind and the local interstellar medium for the wind region enclosed by the heliospheric shock are reviewed. After identifying the principal mechanisms to influence the dynamics of the solar wind, an approach allowing the simultaneous incorporation of neutral atoms, pick-up ions, cosmic rays and energetic electrons into a multifluid model of the expanding wind plasma is outlined. The effects of these particle species are discussed in detail, with special emphasis on the electron component which behaves more like a quasi-static hot gas rather than an expanding fluid. This electron gas is effectively trapped within a three-dimensional trough of a circumsolar electric potential whose outer fringes are possibly determined by the density distribution of anomalous cosmic rays. The electrons are proven to be a globally structered component of great importance for the solar wind momentum flow contributing to a triggering of the solar wind dynamics by asymmetric interstellar boundary conditions. Finally, the consequences for the relative motion of the Sun and the local interstellar medium as well as for the solar system as a whole are described.  相似文献   
4.
Power grids and pipeline networks at all latitudes are known to be at risk from the natural hazard of geomagnetically induced currents. At a recent workshop in South Africa, UK and South African scientists and engineers discussed the current understanding of this hazard, as it affects major power systems in Europe and Africa. They also summarised, to better inform the public and industry, what can be said with some certainty about the hazard and what research is yet required to develop useful tools for geomagnetic hazard mitigation.  相似文献   
5.
Through the striving of humanity into space, new production processes and technologies for the use under microgravity will be essential in the future. Production of objects in space demands for new processes, like additive manufacturing. This paper presents the concept and the realization for a new machine to investigate microgravity production processes on earth. The machine is based on linear long stator drives and a vacuum chamber carrying up to 1000?kg. For the first time high repetition rate and associated low experimental costs can provide basic research. The paper also introduces the substrate-free additive manufacturing as a future research topic and one of our primary application.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号