首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   0篇
航天   9篇
  2016年   1篇
  2014年   1篇
  2012年   1篇
  2011年   1篇
  2010年   1篇
  2009年   2篇
  2005年   1篇
  2003年   1篇
排序方式: 共有9条查询结果,搜索用时 15 毫秒
1
1.
A monodromy matrix calculated at a single arbitrary point of the periodic solution to a Hamiltonian system allows one to obtain both the direction of continuation for the family of solutions of the first (in Poincarés sense) kind and the multiplicity and direction of branching for periodic solutions of the second kind. In case of resonances 1 : 1 and 1 : 2 one needs to take into account the structure of elementary divisors of the monodromy matrix. Using the planar circular restricted three-body problem as an example, the infiniteness of the process of branching for a nonintegrable system and its finiteness for an integrable system are demonstrated. It is proved that periodic solutions of both first and second kinds which are obtained by continuation of symmetric periodic solutions of a restricted problem are also symmetric. The only exception is the case of resonance 1 : 1 and two second-order cells of the monodromy matrix in the Jordanian form. In this case, all periodic solutions of the second kind turned out to be nonsymmetrical. Examples of the families of nonsymmetrical periodic solutions are given.__________Translated from Kosmicheskie Issledovaniya, Vol. 43, No. 2, 2005, pp. 88–110.Original Russian Text Copyright © 2005 by Kreisman.  相似文献   
2.
Horseshoe orbits in the restricted three-body problem have been mostly considered in the Sun–Jupiter system and, in recent years, in the Sun–Earth system. Here, these orbits have been used to find asteroids that have orbits of this kind. We have built a planar family of horseshoe orbits in the Earth–Moon system and determined the points of planar and 1/1 vertical resonances on this family. We have presented examples of orbits generated by these spatial families.  相似文献   
3.
Within the framework of the circular restricted three-body problem a family of inverse periodic orbits around the two attracting bodies (the Egorov’s family) and families generated by it at the 1:1, 2:1, and 3:1 resonances for three-dimensional orbits in the Sun-Earth and Earth-Moon systems are considered. Their relationship with families generated by orbits around the libration points L 1, L 2 and L 3 is investigated. One of the families contains periodic solutions that seem promising as possible orbits for the space radio telescope of the Millimetron project.  相似文献   
4.
Kreisman  B. B. 《Cosmic Research》2003,41(1):51-62
The families of periodic solutions to an autonomous Hamiltonian system in that part where the solutions are unstable have their specific field of influence. Under strong instability, the orbits that have fallen in such a field of influence are drawn into the family as in a whirlpool and then are thrown away from it. In the particular case of the restricted three-body problem, the orbits around the libration points L 1 and L 2 are super-unstable and the Keplerian elements in motion over these orbits change drastically. When the orbits fall into such a domain, for some time the motion is close to the motion around the libration point, and after being thrown out of this domain, the Keplerian orbital elements also change essentially.  相似文献   
5.
A method of constructing three-dimensional orbits with a necessary evolution in the system the Sun — (Earth + Moon) is described. The orbit (promising from the viewpoint of solving formulated research problems) of the Millimetron spacecraft is suggested. Feasibility of such an orbit is demonstrated, as well as a possibility to observe with its help the majority of objects on the celestial sphere and to transmit the data to the Earth.  相似文献   
6.
In the context of the restricted circular three-body problem a method for constructing families of periodic orbits is described. Each orbit contains a segment of transfer from artificial satellite orbit of a smaller body to an orbit around L 1 or L 2 points of the Sun-Earth and Earth-Moon systems, a segment of multiple flyby of this libration point, and a segment of return to the artificial satellite orbit. Dependences of velocities at the pericenter on the pericenter radius are given.  相似文献   
7.
A technique of generation of spatial periodic solutions to the restricted circular three-body problem from periodic orbits of the planar problem has been used for the families of orbits around collinear libration points L 1 and L 2. Developing the families obtained at the 1: 1 resonance, we have obtained stable solutions both in the Earth-Moon system and in the Sun-Earth system. Of course, the term “around the libration point” is rather conventional; the obtained orbits become more similar to the orbits around the smaller attracting body. The further development of the family of orbits “around” the libration point L 2 in the Sun-Earth system made it possible to find the orbits satisfying the new, much more rigorous constraints on cooling the spacecraft of the Millimetron project.  相似文献   
8.
In order to carry out tasks of the RadioAstron mission, a high-apogee orbit was designed. On average, the period of its satellite’s orbit around the Earth is 8.5 days with evolution due to gravitational perturbations produced by the Moon and the Sun. The perigee and apogee of this orbit vary within the limits 7500–70000 km and 270000–333000 km, respectively. The basic evolution of the orbit represents a rotation of its plane around the line of apsides. Over 3 years, the plane normal to the orbit draws on the celestial sphere an oval with a semi-major axis of about 150° and semi-minor axis of about 45°.  相似文献   
9.
Planar orbits of three-dimensional restricted circular three-body problem are considered as a special case of three-dimensional orbits, and the second-order monodromy matrices M (in coordinate z and velocity v z ) are calculated for them. Semi-trace s of matrix M determines vertical stability of an orbit. If |s| ≤ 1, then transformation of the subspace (z, v z ) in the neighborhood of solution for the period is reduced to deformation and a rotation through angle φ, cosφ = s. If the angle ? can be rationally expressed through 2π,φ = 2π·p/q, where p and q are integer, then a planar orbit generates the families of three-dimensional periodic solutions that have a period larger by a factor of q (second kind Poincareé periodic solutions). Directions of continuation in the subspace (z, v z ) are determined by matrix M. If |s| < 1, we have two new families, while only one exists at resonances 1: 1 (s = 1) and 2: 1 (s = ?1). In the course of motion along the family of three-dimensional periodic solutions, a transition is possible from one family of planar solutions to another one, sometimes previously unknown family of planar solutions.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号