首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
航天技术   2篇
航天   4篇
  2017年   1篇
  2007年   2篇
  2004年   1篇
  1985年   2篇
排序方式: 共有6条查询结果,搜索用时 46 毫秒
1
1.
For investigations of the isolated magnetospheric substorm the ground-based and satellite geophysical data are discussed. The active phase of the substorm has two parts: an active-convective phase and a classical active phase. The analysed data show that the breakup of the substorm takes place at closed and not very much stretched magnetic field lines.  相似文献   
2.
Measurements of the electric field in the ionosphere and the equatorial plane during the pre-onset and actives phases of a substorm (March 4, 1979) are compared. Correlations and disagrements between the measurements are considered. The preliminary conclusion is reached that the model of electrojet polarisation proposed by CORONITI and KENNEL (1972) could possibly explain part of our observations.  相似文献   
3.
Lazutin  L. L.  Kozelova  T. V. 《Cosmic Research》2004,42(4):309-330
Based on a large number of measurements of the magnetic field and energetic particles onboard the CRRES satellite and on ground-based measurements we describe the fine structure of the first several minutes of the expansion activation of a substorm. The main result is that we have found a fast enhancement of the flux of energetic ions immediately before the beginning of substorm dipolization of the magnetic field. This effect was not known earlier, and the enhancement is invisible from the ground during auroras. We suggest that the appearance of an excess flux of energetic ions has a triggering effect on the local expansion activation of a substorm. The model of a current meander is put forward, which explains the generation of an inductance electric field, current wedge, and other effects of the explosive onset of a substorm.  相似文献   
4.
We have considered variations in fields and particle fluxes in the near-Earth plasma sheet on the THEMIS-D satellite together with the auroral dynamics in the satellite-conjugate ionospheric part during two substorm activations on December 19, 2014 with K p = 2. The satellite was at ~8.5RE and MLT = 21.8 in the outer region of captured energetic particles with isotropic ion fluxes near the convection boundary of electrons with an energy of ~10 keV. During substorm activations, the satellite recorded energetic particle injections and magnetic field oscillations with a period of ~90 s. In the satellite-conjugate ionospheric part, the activations were preceded by wavelike disturbances of auroral brightness along the southern azimuthal arc. In the expansion phase of activations, large-scale vortex structures appeared in the structure of auroras. The sudden enhancements of auroral activity (brightening of arcs, auroral breakup, and appearance of NS forms) coincided with moments of local magnetic field dipolarization and an increase in the amplitude Pi2 of pulsations of the Bz component of the magnetic field on the satellite. Approximately 30–50 s before these moments, the magnetosphere was characterized by an increased rate of plasma flow in the radial direction, which initiated the formation of plasma vortices. The auroral activation delays relative to the times when plasma vortices appear in the magnetosphere decreased with decreasing latitude of the satellite projection. The plasma vortices in the magnetosphere are assumed to be responsible for the observed auroral vortex structures and the manifestation of the hybrid vortex instability (or shear flow ballooning instability) that develops in the equatorial magnetospheric plane in the presence of a shear plasma flow in the region of strong pressure gradients in the Earthward direction.  相似文献   
5.
The substorm on March 12, 1991 is studied using the data of ground-based network of magnetometers, all-sky cameras and TV recordings of aurora, and measurements of particle fluxes and magnetic field onboard a satellite in the equatorial plane. The structure of substorm activity and the dynamics of auroral ions of the central plasma sheet (CPS) and energetic quasi-trapped ions related to the substorm are considered in the first part. It is shown that several sharp changes in the fluxes and pitch-angle distribution of the ions which form the substorm ion injection precede a dipolarization of the magnetic field and increases of energetic electrons, and coincide with the activation of aurora registered 20° eastward from the satellite. A conclusion is drawn about different mechanisms of the substorm acceleration (injection) of electrons and ions.  相似文献   
6.
In the first part of this study of the substorm of March 12, 1991, the space-time structure of substrorm disturbance and dynamics of auroral ions were considered. This second part presents an analysis of measurements of auroral electrons onboard the CRRES satellite. It is demonstrated that enhancements of the electron flux (injections) during large-scale and local dipolarizations of the magnetic field are determined by a combination of field-aligned, induction, and betatron mechanisms of acceleration with an effect of displacement of the drift shells of particles. The relative contributions of these mechanisms in relation to the energy of auroral electrons are determined.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号