首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   0篇
航空   1篇
航天   11篇
  2021年   1篇
  2018年   1篇
  2017年   3篇
  2016年   4篇
  2007年   2篇
  2006年   1篇
排序方式: 共有12条查询结果,搜索用时 17 毫秒
1.
Although the auroral substorm has been long regarded as a manifestation of the magnetospheric substorm, a direct relation of active auroras to certain magnetospheric processes is still debatable. To investigate the relationship, we combine the data of the UV imager onboard the Polar satellite with plasma and magnetic field measurements by the Geotail spacecraft. The poleward edge of the auroral bulge, as determined from the images obtained at the LHBL passband, is found to be conjugated with the region where the oppositely directed fast plasma flows observed in the near-Earth plasma sheet during substorms are generated. We conclude that the auroras forming the bulge are due to the near-Earth reconnection process. This implies that the magnetic flux through the auroral bulge is equal to the flux dissipated in the magnetotail during the substorm. Comparison of the magnetic flux through the auroral bulge with the magnetic flux accumulated in the tail lobe during the growth phase shows that these parameters have the comparable values. This is a clear evidence of the loading–unloading scheme of substorm development. It is shown that the area of the auroral bulge developing during substorm is proportional to the total (magnetic plus plasma) pressure decrease in the magnetotail. These findings stress the importance of auroral bulge observations for monitoring of substorm intensity in terms of the magnetic flux and energy dissipation.  相似文献   
2.
The simplest version of the method of detecting the single molecular scattering field based on the polarization measurements of the twilight sky background by all-sky cameras has been considered. The method can be used during transitive twilight (with solar zenith angles of 94°–98°), when effective single scattering occurs in the upper stratosphere and lower mesosphere. The long-term measurements conducted using this method in the Moscow region and Apatity make it possible to determine the temperature of these atmospheric layers and estimate the contribution and properties of multiple scattering during the transitive twilight.  相似文献   
3.
The minimal scale of the Alfvénic turbulence transverse to the external magnetic field in the topside auroral ionosphere is investigated using electric field observations of the FAST spacecraft (the resolution 512 s–1). The events in which the power law form of the electric fluctuation spectra with a 2.0–2.5 slope (typical of Alfvénic turbulence) remains unchanged down to acoustic gyroradius ρs or ion gyroradius ρi local values are illustrated for the first time. In this case, the character of spectrum variation does not change at the electron inertial length λe, which is much larger than ρs and ρi for FAST altitudes (apogee ~4000 km). We have tried to explain this experimental fact by consideration of the known scenarios of the appearance of a small transverse scale in an Alfvénic perturbation. It has been noted that the effects of front steepening in an inertial Alfvén wave with a finite amplitude, which propagates at an angle smaller than (me/mi)1/2 with respect to the transverse direction, can result in small transverse scales comparable with acoustic gyroradius appearing in a perturbation.  相似文献   
4.
This paper discusses the results of early measurements of temperature and dust in the mesosphere on the basis of wide-field twilight sky polarimetry, which began in 2015 in Apatity (North of Russia, 67.6° N, 33.4° E) using the original entire-sky camera. These measurements have been performed for the first time beyond the Polar Circle in the winter and early spring period. The general polarization properties of the twilight sky and the procedure for identifying single scattering are described. The key results of the study include the Boltzmann temperature values at altitudes higher than 70 km and the conclusion on a weak effect of dust on scattering properties of the mesosphere during this period.  相似文献   
5.
The spatial–temporal variations in aurora and VLF emissions during an weak intensification in the auroral zone morning sector on December 30, 2011, have been analyzed. The event was accompanied by a negative bay (~70 nT) in the X component of the magnetic field at ground stations in northern Scandinavia. At the recovery phase of this bay, the precipitation zone moved and VLF emission frequency simultaneously increased over ten minutes, which may indicate that waves and precipitating electrons had a common source. VLF noise bursts in the 600–1000 Hz band with a characteristic modulation scale of ~10 s and the corresponding aurora intensifications localized in the ~100 km region were observed during the following ten minutes, which also confirms that recorded waves are related to electron precipitation. This correspondence of the pulsating aurora periods and VLF noise modulation has been revealed for the first time. The role of VLF wave generation processes during the cyclotron interaction with electrons in the magnetosphere and the propagation of these waves from the magnetosphere to the observation point are discussed.  相似文献   
6.
Kozelov  B. V.  Dashkevich  Zh. V.  Ivanov  V. E. 《Cosmic Research》2021,59(4):223-230
Cosmic Research - A technique is presented for reconstructing the height profiles of the volume emission rate and estimating the crosscut dimensions of rayed structures in auroras from the data of...  相似文献   
7.
We have analyzed a short-term (3–4 s) burst of geomagnetic pulsations in the frequency range of 0.2–5 Hz observed during the commencement of a magnetic storm on March 17, 2015. The burst was observed by a network of observatories in different sectors of local time and at different latitudes. The spectra of pulsations involves a resonant structure with a global maximum at a frequency of 2.78 ± 0.38 Hz, despite some differences at different observatories. There is a delay by almost 4 s in the maximum of the train amplitude at nightside observatories with respect to a dayside observatory. The burst of pulsations has been shown to be on the front of the magnetic disturbance associated with sudden storm commencement (SSC) and, therefore, can be considered as a precursor. The observations of particle fluxes by low-orbit satellites have shown that the SSC is accompanied by a dramatic increase in the fluxes of precipitating protons and electrons. We have suggested that the mechanism of oscillation generation may be the ion–cyclotron instability of ring current protons and the resonant structure of pulsations may be associated with the ionospheric Alfvén resonator.  相似文献   
8.
A physicochemical model of excited polar ionosphere has been presented. The model makes it possible to calculate vertical profiles of concentrations of the following excited and ionized constituents: O2 +, N2 +, O+(4S), O+(2D), O+(2P), O(1D), O(1S), N(4S), N(2D), N(2P), NO, NO+, N+, N2(A3Σu +), N2(B3Пg), N2(W3Δu), and N2(B′3Σu -) and the electron concentration during electron precipitations. The energy spectrum of the electrons at the upper boundary of the ionosphere and concentrations of neutral constituents are the input parameters of the model. A model has been compiled based on available publications and includes 56 physicochemical reactions that influence concentrations of the aforementioned constituents in the polar ionosphere. The method of calculating vertical profiles of the excitation rates of atmospheric gases and proper allowance for the electron-vibrational kinetics in the processes of exciting the triplet states of N2 are specific features of the presented model. The ionospheric model has been approbated using the results of the coordinated rocket–satellite experiment. The agreement between the modeling results and experimental data best for the time being is achieved.  相似文献   
9.
We have considered variations in fields and particle fluxes in the near-Earth plasma sheet on the THEMIS-D satellite together with the auroral dynamics in the satellite-conjugate ionospheric part during two substorm activations on December 19, 2014 with K p = 2. The satellite was at ~8.5RE and MLT = 21.8 in the outer region of captured energetic particles with isotropic ion fluxes near the convection boundary of electrons with an energy of ~10 keV. During substorm activations, the satellite recorded energetic particle injections and magnetic field oscillations with a period of ~90 s. In the satellite-conjugate ionospheric part, the activations were preceded by wavelike disturbances of auroral brightness along the southern azimuthal arc. In the expansion phase of activations, large-scale vortex structures appeared in the structure of auroras. The sudden enhancements of auroral activity (brightening of arcs, auroral breakup, and appearance of NS forms) coincided with moments of local magnetic field dipolarization and an increase in the amplitude Pi2 of pulsations of the Bz component of the magnetic field on the satellite. Approximately 30–50 s before these moments, the magnetosphere was characterized by an increased rate of plasma flow in the radial direction, which initiated the formation of plasma vortices. The auroral activation delays relative to the times when plasma vortices appear in the magnetosphere decreased with decreasing latitude of the satellite projection. The plasma vortices in the magnetosphere are assumed to be responsible for the observed auroral vortex structures and the manifestation of the hybrid vortex instability (or shear flow ballooning instability) that develops in the equatorial magnetospheric plane in the presence of a shear plasma flow in the region of strong pressure gradients in the Earthward direction.  相似文献   
10.
Broadband electrostatic noise in the auroral ionosphere can be identified as a version of waves of an electrostatic ion cyclotron type, excited by plasma instability resulting from an inhomogeneous distribution of wave energy density. Broadband waves are generated due to both electric field inhomogeneities and plasma density inhomogeneities. The effect of the form of the distribution of electric field and plasma density inhomogeneities on the excitation of instabilities is studied. Also there is shown the role of the characteristic scale of inhomogeneities in the generation of electrostatic ion cyclotron waves due to the development of instability of this kind. The study of these issues, which are important for understanding the processes in the auroral region, is the subject of this paper. The work presents also a comparison of numerical results obtained using both satellite data and model approximations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号