首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
航天技术   1篇
航天   2篇
  2009年   1篇
  2008年   1篇
  1992年   1篇
排序方式: 共有3条查询结果,搜索用时 15 毫秒
1
1.
In order to collect basic data about CO2 and O2 budgets of a plant cultural system in a CELSS, the variation of the CO2 absorption rates of lettuce and turnips were observed during the growing period, under different conditions. The O2 release rates were deduced from the CO2 absorption rates multiplied by 32/44. As a result, when the light intensity, the photoperiod and the atmospheric CO2 concentration increased, the rates also increased. The effects on the turnips were more significant than those on the lettuce. Turnips at 310 micromoles/m2/s of PPFD, 24 hours of photoperiod and 1100 ppm of CO2 concentration grew most actively in the present experimental conditions. One turnip absorbed 32.3 g CO2 and released 23.5 g O2 for 6 days between 24 days and 30 days after sowing.  相似文献   
2.
This paper attempts to search the lost fragments from the near-synchronous US TitanIIIC transtage explosion of February 21, 1992, known as the second major fragmentation of a TitanIIIC transtage. This breakup was accidentally observed by the Maui GEODSS sensor, and then a total of 23 objects were reported from the breakup, no orbital data on any fragments has been generated by the SSN. In order to evaluate the debris cloud orbital evolution, we demonstrate the actual US TitanIIIC transtage explosion by using breakup model and orbit propagator. The perturbing accelerations, considered in this analysis are the non-spherical part of the Earth's gravitational attraction, the gravitational attraction due to the Sun and Moon, and the solar radiation pressure effects. Finally, we will present a search strategy based on distribution of the right ascension of the ascending node about the catalogued objects and the debris particles from the US TitanIIIC transtage explosion.  相似文献   
3.
(MUSCAT) is a high value computation tool for analyzing spacecraft–plasma interaction, whose typical example is charging–arcing issue, corresponding to spacecrafts in LEO, GEO and PEO. JAXA and Kyushu Institute of Technology (KIT) started the development as a joint project in November 2004 and the final version of MUSCAT was released in March 2007. The final version includes many important features to simulate spacecraft–plasma interaction and the features can be separated into four parts. The first part is its GUI named “Vineyard”. By using Vineyard, MUSCAT users can build a satellite model including not only its geometry but also material properties of the surface. As for the second part, MUSCAT includes many kinds of effects derived from space plasma environment as well as electrical functions of spacecraft. For the third part, MUSCAT can work on parallel workstation with multi-CPU. The last feature is that the computation result by MUSCAT was thoroughly validated by experiments in plasma chamber. The numerical result shows very good agreement with the code validation experiment. We also conducted trial computation of charging analysis on Greenhouse gases Observing Satellite (GOSAT) with MUSCAT. One purpose of the computation was prediction of charging status of GOSAT for the real satellite design in combination with the ground test. The other is performance assessment of MUSCAT. After the joint project, expansion and maintenance of MUSCAT will be carried out by “MUSCAT Space Engineering Ltd” which is a new enterprise made of the development team. In future we will try to conduct MUSCAT computation for various spacecrafts and also try to add useful function such as 3D CAD compatibility.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号