首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   0篇
航天   9篇
  2022年   1篇
  2016年   1篇
  2013年   1篇
  2011年   1篇
  2007年   1篇
  2006年   1篇
  2003年   1篇
  2002年   1篇
  2001年   1篇
排序方式: 共有9条查询结果,搜索用时 609 毫秒
1
1.
On the basis of numerical calculations of trajectories, the peculiarities of motion of submicron-sized particles in the Earth's plasmasphere are investigated. The most important result of these investigations is the found possibility of long-term residence of a microparticle in the Earth's vicinity. This effect is a result of the interaction of the electric charge, induced on a microparticle, with the magnetic field of the Earth. It is shown that the effect of microparticle capture by the Earth's magnetic field takes place in the case when the microparticles having a dimension of about 10–2 m and made of a material having high yield of photoemission are injected into the plasmasphere at altitudes of about several thousand kilometers and also in the case when the microparticles with a dimension of about 10–3 m and made of a material having low yield of photoemission are injected into the plasmasphere at altitudes of about 15000–20000 km and are moving close to the equatorial plane.  相似文献   
2.
3.
On the basis of numerical experiments the theoretical possibility of long-time (longer than 1 month) and superlong-time (longer than 1 year) existence in orbit of technogenic microparticles (MPs) with radii of a few hundredths of a micrometer is demonstrated. MPs are injected into the near-Earth space (NES) in elongated elliptical low-perigee orbits with parameters, corresponding to Molniya satellite’s orbital parameters. Calculations were carried out taking into account disturbing effects on the MP orbital motion in NES of the following factors: the gravitational disturbance caused by polar oblateness of the Earth, the solar pressure force (calculated with using the techniques of the Mie theory), the drag force of a neutral component of background gas, as well as the electrodynamic forces caused by interaction of electric charge, induced on MPs, with the magnetic and electric fields of the NES.  相似文献   
4.
On the basis of numerical experiments, we have shown the principal possibility of long (more than 1 month) and extremely long (more than 1 year) orbit lifetime of technogenic microparticles with radii from 1 to 100 μm injected into the near-Earth space in highly elliptical orbits with low perigee, including the case of an orbit with parameters corresponding to the orbital parameters of the Molniya satellite. Calculations are performed taking into account the perturbing effect on the orbital microparticle motion in the near-Earth space of gravitational perturbation caused by the Earth’s polar oblateness, the solar pressure force (calculated using methods of the Mie theory), and the drag force of neutral component of the background gas under conditions of low, medium, and high levels of solar and geomagnetic activities.  相似文献   
5.
This article, like our previous one [1], is devoted to advanced space technology concepts. It evaluates the potential for developing active systems to conduct a remote elemental analysis of surface rocks on an atmosphereless celestial body. The analysis is based on the spectrometry of characteristic X-rays (CXR) artificially excited in the surface soil layer. It has been proposed to use an electron beam injected from aboard a spacecraft orbiting the celestial body (or moving in a flyby trajectory) to excite the CXR elements contained in surface rocks. The focus is on specifying technical requirements to the parameters of payloads for a global mapping of the composition of lunar rocks from aboard of a low-orbiting lunar satellite. This article uses the results obtained in [2], our first study that shows the potential to develop an active system for a remote elemental analysis of lunar surface rocks using the above method. Although there has been interest in our research on the part of leading national academic institutions and space technology developers in the Soviet Union, the studies were discontinued because of the termination of the Soviet lunar program and the completion of the American Apollo program.  相似文献   
6.
The feasibility of constructing a high-voltage electric generator (HEG) transforming kinetic energy of particles of the radiation belts into electric power is considered. The maximum specific power of the generator is theoretically evaluated for a particular case of setting it inside the natural radiation belts of the Earth (ERB). It is demonstrated that from the viewpoint of weight parameters, the suggested design of HEG is quite competitive (at least in the region of domination of the ERB proton flux) with power sources of low-thrust spacecraft operating on conventional principles.  相似文献   
7.
The general conditions of applicability are formulated for the canonical formulation of the problem of motion of micro-particles with variable electric charge in the near-Earth space. The validity of these conditions is demonstrated for particles of sub-micron dimension executing orbital motion in the Earth’s plasmasphere.  相似文献   
8.
Kolesnikov  E. K.  Chernov  S. V. 《Cosmic Research》2022,60(4):275-281
Cosmic Research - Based on results of numerical modeling, this paper shows for the first time the possibility of a long-term orbital existence of technogenic aluminum-oxide particles separating...  相似文献   
9.
Kuznetsov  E. D.  Berland  V. E.  Wiebe  Yu. S.  Glamazda  D. V.  Kajzer  G. T.  Kolesnikov  V. I.  Khremli  G. P. 《Cosmic Research》2002,40(3):305-312
This paper continues a comparative analysis of modern satellite models of the Earth's gravity which we started in [6, 7]. In the cited works, the uniform norms of spherical functions were compared with their gradients for individual harmonics of the geopotential expansion [6] and the potential differences were compared with the gravitational accelerations obtained in various models of the Earth's gravity [7]. In practice, it is important to know how consistently the EAS motion is represented by various geopotential models. Unless otherwise stated, a model version in which the equations of motion are written using the classical Encke scheme and integrated together with the variation equations by the implicit one-step Everhart's algorithm [1] was used. When calculating coordinates and velocities on the integration step (at given instants of time), the approximate Everhart formula was employed.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号