首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   0篇
航空   1篇
航天技术   3篇
航天   5篇
  2014年   2篇
  2011年   1篇
  2009年   1篇
  2008年   2篇
  2007年   1篇
  2004年   1篇
  2002年   1篇
排序方式: 共有9条查询结果,搜索用时 15 毫秒
1
1.
Residual stresses and endurance strength of specimens with stress concentrators are considered. The results obtained make it possible to predict the fatigue limit of strengthened parts with concentrators in the case of tension-compression.  相似文献   
2.
The results of simultaneous analysis of plasma and magnetic field characteristics measured on the INTERBALL/Tail Probe, WIND and Geotail satellites on March 2, 1996, are presented. During these observations the INTERBALL/Tail Probe crossed the low-latitude boundary layer, and the WIND and Geotail satellites measured the solar wind’s and magnetosheath’s parameters, respectively. The plasma and magnetic field characteristics in these regions have been compared. The data of the Corall, Electron, and MIF instruments on the INTERBALL/Tail Probe satellite are analyzed. Fluctuations of the magnetic field components and plasma velocity in the solar wind and magnetosheath, measured onboard the WIND and Geotail satellites, are compared. The causes resulting in appearance of plasma jet flows in the low-latitude boundary layer are analyzed. The amplitude of magnetic field fluctuations in the magnetosheath for a studied magnetosphere boundary crossing is shown to exceed the magnetic field value below the magnetopause near the cusp. The possibility of local violation of pressure balance on the magnetopause is discussed, as well as penetration of magnetosheath plasma into the magnetosphere, as a result of magnetic field and plasma flux fluctuations in the magnetosheath.  相似文献   
3.
Crossings of the magnetopause near the subsolar point are analyzed using data of THEMIS mission. Variations of the magnetic field near magnetopause measured by one of THEMIS satellites are studied and compared with simultaneous measurements in the solar wind by another THEMIS satellite. The time delay of the solar wind arrival at the subsolar point of the magnetopause is taken into account. 30 and 90 s averaging of the magnetic field in the magnetosheath is produced. The results of averaging are compared with the results of measurements in the solar wind before the bow shock and foreshock. It is shown, that BxBx component of the magnetic field near magnetopause is near to zero, which supports the possibility to consider the magnetopause as the tangential discontinuity. Comparatively good correlation of ByBy component in the solar wind and near the magnetopause is observed. The correlation of BzBz component near the magnetopause and IMF is practically absent, the sign of the BzBz near the subsolar point does not coincide with the sign of IMF BzBz in ∼30% cases.  相似文献   
4.
Kirpichev  I. P. 《Cosmic Research》2004,42(4):338-348
The results of an analysis of the pressure distribution of the hot magnetosphere plasma and transverse currents in the plasma at distances from 8R E to 12R E are presented. The data were taken in the vicinity of the equatorial plane onboard the Interball-1 satellite during its passages on October 13, 1995 and March 13, 1996. The pressure was determined from the measurements of particle fluxes by the CORALL, DOK-2, and SKA-2 instruments. The specific features of this experiment made it possible to calculate the pressure with a high accuracy and to determine the distribution of the magnetostatically equilibrium currents in the plasma. It is shown that at the parts of the monotonous increase of the pressure in the earthward direction one can detect regions of plateau in the plasma pressure. A possible origin of the small-scale variations and regions with plateau are discussed. A comparison of the measured pressure profiles with the pressure profiles in the Tsyganenko and Mukai-2003 model is performed. Transverse currents flowing in the plasma are calculated assuming magnetostatic equilibrium.  相似文献   
5.
One of the main endeavors of the “Space Weather” program is the prediction of the appearance of very large fluxes of relativistic electrons with energies larger than 1 MeV, because they represent a serious potential hazard for satellite missions. Large fluxes of relativistic electrons are formed in the outer radiation belt during the recovery phase of some storms. The formation of large fluxes is connected to a balance between the acceleration and loss processes. A two-step acceleration process is ordinarily analyzed. A “Seed” population with energies ∼hundreds of keV appeared during expansion phase of magnetospheric substorm. A “Seed” population is additionally accelerated obtaining relativistic energies by some other process. Several acceleration mechanisms have been proposed for the explanation of the electron acceleration, including radial diffusion and internal acceleration by wave-particle interactions. Nevertheless, none of them takes into account great changes of magnetospheric topology during a magnetic storm. Such changes are mainly connected with asymmetric and symmetric ring current development. We analyze the changes of magnetospheric topology during magnetic storms. We show that a change of the magnetospheric magnetic field can be the important factor determining the acceleration of relativistic electrons.  相似文献   
6.
We present the results on variations of ion spectra in the energy range from 1 keV to 3 MeV. The spectra measured onboard the INTERBALL Tail Probe satellite on November 13, 1995, during the satellite's passage from the dipole field lines to the lines stretched into the magnetotail are analyzed. The data of the CORALL, DOK-2, and SKA-2 instruments are used to reconstruct the ion spectra. It is shown that, when the ion spectrum along the satellite trajectory is averaged over 2-min intervals, it is smooth up to geocentric distances of 6R E. With decreasing distances, the form of the particle spectra in the region under consideration remained virtually unchanged (region from L = 11R E down to L= 6R E) and only insignificant variations of the energy of the spectral maxima are observed. Possible reasons for the observed regularities are discussed.  相似文献   
7.
The results of an investigation of the distribution of plasma pressure, pressure gradients, and magnetic field near the equatorial plane in the plasma ring surrounding the Earth under magneto-quiet conditions are presented. Observational data obtained during the international THEMIS mission are used. The picture of the distribution of transverse-current density near the equatorial plane was obtained under assumption of observing the magnetostatic balance condition at geocentric distances from 6 to 12R E. In estimating the integral transverse current it was accepted that in daytime sector the magnetic-field minima on magnetic field lines are not localized in the equatorial plane. Estimates of the integral transverse current were obtained, which demonstrate the possibility of closing nighttime transverse currents at geocentric distances of up to ~12R E inside the magnetosphere, which form a high-latitudinal continuation of the ring current.  相似文献   
8.
An analysis of the pressure balance on the magnetopause near the subsolar point has been made for 18 crossings of the magnetopause by the THEMIS project satellites under magneto-quiet conditions. Dynamic and static pressures of plasma are determined, as well as magnetic pressure in the magnetosheath, and magnetic and plasma static pressure inside the magnetosphere. Variations of the total pressure have been studied in the case when one satellite is located inside the magnetosphere and another one stays in the magnetosheath near the magnetopause. It is demonstrated that for 18 investigated events the condition of pressure balance at the subsolar point is valid on average with an accuracy of 7%, within measurement errors and under applicability of the approximation of anisotropic magnetic hydrodynamics to collisionless plasma of the magnetosheath and magnetosphere.  相似文献   
9.
Characteristics of low latitude boundary layer (LLBL) of the Earth’s magnetosphere are investigated using data of Interball/Tail probe observations. The role of different processes of LLBL formation is discussed. The high level of magnetosheath turbulence is taken into account. It is shown that the turbulent nature of magnetic field and plasma fluctuations in the magnetosheath is one of the main factors determining the structure of LLBL. The results of Interball/Tail probe observations of the event 9 March 1996 are analyzed. The thickness of LLBL is determined for the number of cases. The change of LLBL thickness under the influence of the changes of solar wind parameters is investigated. It is shown that variability of solar wind conditions can be the important factor controlling LLBL thickness. Results of observations are compared with the theory which explains the value of LLBL thickness as the result of plasma transport inside the magnetosphere. It is shown that the theory gives the qualitative explanation of the observed dependence of LLBL thickness on solar wind parameters.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号