首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   89篇
  免费   0篇
航空   49篇
航天技术   28篇
综合类   1篇
航天   11篇
  2019年   1篇
  2018年   3篇
  2014年   3篇
  2013年   1篇
  2011年   5篇
  2010年   6篇
  2009年   2篇
  2008年   3篇
  2007年   2篇
  2005年   3篇
  2004年   2篇
  2003年   3篇
  2001年   2篇
  2000年   2篇
  1999年   1篇
  1998年   3篇
  1996年   1篇
  1995年   4篇
  1994年   2篇
  1993年   4篇
  1992年   1篇
  1991年   2篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1985年   3篇
  1984年   4篇
  1983年   1篇
  1982年   2篇
  1981年   2篇
  1980年   1篇
  1979年   1篇
  1978年   7篇
  1976年   1篇
  1975年   1篇
  1973年   1篇
  1972年   1篇
  1971年   1篇
  1970年   2篇
  1966年   1篇
  1965年   1篇
排序方式: 共有89条查询结果,搜索用时 15 毫秒
1.
The control of water content and water movement in granular substrate-based plant root systems in microgravity is a complex problem. Improper water and oxygen delivery to plant roots has delayed studies of the effects of microgravity on plant development and the use of plants in physical and mental life support systems. Our international effort (USA, Russia and Bulgaria) has upgraded the plant growth facilities on the Mir Orbital Station (OS) and used them to study the full life cycle of plants. The Bulgarian-Russian-developed Svet Space Greenhouse (SG) system was upgraded on the Mir OS in 1996. The US developed Gas Exchange Measurement System (GEMS) greatly extends the range of environmental parameters monitored. The Svet-GEMS complex was used to grow a fully developed wheat crop during 1996. The growth rate and development of these plants compared well with earth grown plants indicating that the root zone water and oxygen stresses that have limited plant development in previous long-duration experiments have been overcome. However, management of the root environment during this experiment involved several significant changes in control settings as the relationship between the water delivery system, water status sensors, and the substrate changed during the growth cycles.  相似文献   
2.
On-Line Computer for Transient Turbine Cascade Instrumentation   总被引:1,自引:0,他引:1  
A 32-channel computer based data acquisition and processing system em has been developed for use with the new type of transient cascade facility at Oxford. This is used for testing turbine blades and nozzle guide vanes at full-scale engine Reynolds and Mach numbers ers with correct wallto-flow temperature ratios. A novel technique for processing transient heat transfer data from thin film surface resistance thermometers has been developed. Measurements of surface ace pressure around blades, and of the upstream turbulence level have been made. The cascade and instrumentation are shown to have advantages both in cost and effectiveness over continuous running cascades.  相似文献   
3.
An analogy is drawn between the current knowledge on terrestrial snow and ice-cap chemistry and the possible composition of snowfall and ice caps of Mars. Terrestrial snowfall reflects the composition of the Earth's atmosphere. Snow cover further interacts with the atmosphere and is the recipient of aerosol and particulate fall-out. The snow is transformed to firn and ice and the chemical signatures become locked into the perennial ice sheets. The chemical profiles of ice thus constitute environmental records of the Earth's past. By considering the present knowledge on the hydrologie cycle of Mars and the chemistry of the atmosphere, a simple analogous model for the chemical profile of the North polar ice cap is proposed. Three major constituents of the ice are discussed: water ice, dust, and occluded air bubbles. The seasonal fluctuations and interannual variability of these components are examined as possible chemical signatures for the dating of ice, elucidating hydrologie processes, and recording long-term climatic change. The model of the north polar cap in summer consists of water-ice fine-dust layers (30–200 m thick) sandwiched between annual dust layers of variable size distribution and thickness (< 1m– > 66 m). The water ice is subjected to metamorphism and grain growth. The interpretation of the physico-chemical profile could lead to increased knowledge on the recent climatic past (1,000–2,000 years), hydrologic reservoirs, and seasonal cycles in the atmospheric dynamics of the planet.  相似文献   
4.
In late 2006, NASA's Constellation Program sponsored a study to examine the feasibility of sending a piloted Orion spacecraft to a near-Earth object. NEOs are asteroids or comets that have perihelion distances less than or equal to 1.3 astronomical units, and can have orbits that cross that of the Earth. Therefore, the most suitable targets for the Orion Crew Exploration Vehicle (CEV) are those NEOs in heliocentric orbits similar to Earth's (i.e. low inclination and low eccentricity). One of the significant advantages of this type of mission is that it strengthens and validates the foundational infrastructure of the United States Space Exploration Policy and is highly complementary to NASA's planned lunar sortie and outpost missions circa 2020. A human expedition to a NEO would not only underline the broad utility of the Orion CEV and Ares launch systems, but would also be the first human expedition to an interplanetary body beyond the Earth–Moon system. These deep space operations will present unique challenges not present in lunar missions for the onboard crew, spacecraft systems, and mission control team. Executing several piloted NEO missions will enable NASA to gain crucial deep space operational experience, which will be necessary prerequisites for the eventual human missions to Mars.Our NEO team will present and discuss the following:
• new mission trajectories and concepts;
• operational command and control considerations;
• expected science, operational, resource utilization, and impact mitigation returns; and
• continued exploration momentum and future Mars exploration benefits.
Keywords: NASA; Human spaceflight; NEO; Near-Earth asteroid; Orion spacecraft; Constellation program; Deep space  相似文献   
5.
The anomaly in the displacement estimates obtained from a low-level Kalman-based average displacement estimator is used to detect multiple targets in a forward-looking infrared (FLIR) scene. The displacement estimates originating from the targets could be associated with the detected multiple targets and an updated estimated position of the target could be obtained. This procedure could be repeated for all targets in the scene to obtain multitarget tracking. The behavior of the expected value of the displacement estimates as a function of the number of iterations is investigated. The behavior of the displacement error covariance matrix and the Kalman gain matrix are discussed as functions of the number of iterations  相似文献   
6.
Magnetic Position and Orientation Tracking System   总被引:3,自引:0,他引:3  
Three-axis generation and sensing of quasi-static magneticdipole fields provide information sufficient to determine both the position and orientation of the sensor relative to the source. Linear rotation transformations based upon the previous measurements are applied to both the source excitation and sensor output vectors, yielding quantities that are linearly propotional to small changes in the position and orientation. Changes are separated using linear combinations of sensor output vectors, transformed to the desired coordinate frame, and used to update the previous measurements. Practical considerations for a head-tracking application are discussed.  相似文献   
7.
We highlight the effect on space-telescope temperatures of thedirectionality of the radiative properties of materials, by showing results from a Monte-Carlo simulation of telescope cooling. The need for further measurements of directional properties is stressed.  相似文献   
8.
A capillary-driven root module for plant growth in microgravity.   总被引:2,自引:0,他引:2  
A new capillary-driven root module design for growing plants in microgravity was developed which requires minimal external control. Unlike existing systems, the water supply to the capillary-driven system is passive and relies on root uptake and media properties to develop driving gradients which operate a suction-induced flow control valve. A collapsible reservoir supplies water to the porous membrane which functions to maintain hydraulic continuity. Sheet and tubular membranes consisting of nylon, polyester and sintered porous stainless steel were tested. While finer pore sized membranes allow greater range of operation, they also reduce liquid flux thereby constraining system efficiency. Membrane selection should consider both the maximum anticipated liquid uptake rate and maximum operating matric head (suction) of the system. Matching growth media water retention characteristics to the porous membrane characteristics is essential for supplying adequate liquid flux and gas exchange. A minimum of 10% air-filled porosity (AFP) was necessary for adequate aeration. The capillary-driven module maintained hydraulic continuity and proper gas exchange rates for more than 80 days in a plant growth experiment.  相似文献   
9.
The Regolith X-ray Imaging Spectrometer (REXIS) is the student collaboration experiment proposed and built by an MIT-Harvard team, launched aboard NASA’s OSIRIS-REx asteroid sample return mission. REXIS complements the scientific investigations of other OSIRIS-REx instruments by determining the relative abundances of key elements present on the asteroid’s surface by measuring the X-ray fluorescence spectrum (stimulated by the natural solar X-ray flux) over the range of energies 0.5 to 7 keV. REXIS consists of two components: a main imaging spectrometer with a coded aperture mask and a separate solar X-ray monitor to account for the Sun’s variability. In addition to element abundance ratios (relative to Si) pinpointing the asteroid’s most likely meteorite association, REXIS also maps elemental abundance variability across the asteroid’s surface using the asteroid’s rotation as well as the spacecraft’s orbital motion. Image reconstruction at the highest resolution is facilitated by the coded aperture mask. Through this operation, REXIS will be the first application of X-ray coded aperture imaging to planetary surface mapping, making this student-built instrument a pathfinder toward future planetary exploration. To date, 60 students at the undergraduate and graduate levels have been involved with the REXIS project, with the hands-on experience translating to a dozen Master’s and Ph.D. theses and other student publications.  相似文献   
10.
The Transport Collaboration, consisting of researchers from institutions in France, Germany, Italy and the USA, has established a program to make new measurements of nuclear interaction cross sections for heavy projectiles (Z > or = 2) in targets of liquid H2, He and heavier materials. Such cross sections directly affect calculations of galactic and solar cosmic ray transport through matter and are needed for accurate radiation hazard assessment. To date, the collaboration has obtained data using the LBL Bevalac HISS facility with 20 projectiles from 4He to 58Ni in the energy range 393-910 MeV/nucleon. Preliminary results from the analysis of these data are presented here and compared to other measurements and to cross section prediction formulae.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号