首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   34篇
  免费   0篇
航空   20篇
航天技术   7篇
航天   7篇
  2021年   2篇
  2018年   1篇
  2013年   1篇
  2012年   1篇
  2011年   2篇
  2009年   2篇
  2008年   5篇
  2007年   4篇
  2006年   1篇
  2005年   1篇
  2004年   4篇
  2000年   1篇
  1996年   1篇
  1994年   1篇
  1993年   1篇
  1990年   1篇
  1988年   1篇
  1985年   2篇
  1978年   1篇
  1967年   1篇
排序方式: 共有34条查询结果,搜索用时 15 毫秒
1.
Arnold  N.F.  Robinson  T.R. 《Space Science Reviews》2000,94(1-2):279-286
Recent observational evidence has suggested that variations in solar activity may affect winter stratospheric polar ozone and temperature levels. The paucity of direct sunlight available during this season points strongly to a dynamical mechanism. We have carried out several large ensemble experiments within the middle atmosphere and the coupled middle atmosphere and lower thermosphere to simulate the radiative/dynamical coupling via planetary waves for a range of solar fluxes. In the former case, the model response in the winter stratosphere was linear and of the order of the summer stratopause forcing, whilst in the latter, the level of correlation in the winter stratosphere remained high, but was diluted over a wider volume. The inclusion of the upper atmosphere enhanced the winter polar stratospheric response by a factor of three.  相似文献   
2.
3.
The successful long-duration radiation measurements performed by the VIRTIS instrument aboard ESA’s Venus Express spacecraft have provided an excellent collection of atmospheric and surface data that stand out due to their high temporal and spatial coverage of the planet and due to a high diversity of measurement and environmental conditions.  相似文献   
4.
This paper discusses atmospheric ions and their role in aerosol formation. Emphasis is placed upon the upper troposphere where very low temperatures tend to facilitate new particle formation by nucleation. New measurements addressed include: Laboratory measurements of cluster ions, aircraft measurements of ambient atmospheric ions, atmospheric measurements of the powerful nucleating gas H2SO4 and its gaseous precursor SO2. The paper also discusses model simulations of aerosol formation and growth. It is concluded that in the upper troposphere new aerosol formation via ions is a frequent process with relatively large rates. However new particle formation by homogeneous nucleation which does not involve ions also seems to be efficient. The bottleneck in the formation of upper troposphere aerosol particles with sizes sufficiently large to be climate relevant is mostly not nucleation but sufficient growth of new and still very small particles. Our recent upper troposphere SO2 measurements suggest that particle growth by gaseous sulphuric acid condensation can be efficient in certain circumstances. If so, cosmic ray mediated formation of CCN sized particles should at least occasionally be operative in the upper troposphere.  相似文献   
5.
Thin films containing a mixture of aliphatic (glycine) and aromatic (tryptophan or tyrosine) amino acids were exposed to a vacuum ultraviolet radiation (VUV) with wavelenghts 100–200 nm. Dipeptides (glycyl-tryptophan and glycyl-tyrosine) were synthesized in these conditions. We compared the actions of VUV and γ-radiation. Polymerization is an essential step in prebiological evolution and we have shown that this stage probably occured over an early Solar system history.  相似文献   
6.
The Lunar Gravity Ranging System (LGRS) flying on NASA’s Gravity Recovery and Interior Laboratory (GRAIL) mission measures fluctuations in the separation between the two GRAIL orbiters with sensitivity below 0.6 microns/Hz1/2. GRAIL adapts the mission design and instrumentation from the Gravity Recovery and Climate Experiment (GRACE) to a make a precise gravitational map of Earth’s Moon. Phase measurements of Ka-band carrier signals transmitted between spacecraft with line-of-sight separations between 50 km to 225 km provide the primary observable. Measurements of time offsets between the orbiters, frequency calibrations, and precise orbit determination provided by the Global Positioning System on GRACE are replaced by an S-band time-transfer cross link and Deep Space Network Doppler tracking of an X-band radioscience beacon and the spacecraft telecommunications link. Lack of an atmosphere at the Moon allows use of a single-frequency link and elimination of the accelerometer compared to the GRACE instrumentation. This paper describes the implementation, testing and performance of the instrument complement flown on the two GRAIL orbiters.  相似文献   
7.
Self-organization is a property of dissipative nonlinear processes that are governed by a global driving force and a local positive feedback mechanism, which creates regular geometric and/or temporal patterns, and decreases the entropy locally, in contrast to random processes. Here we investigate for the first time a comprehensive number of (17) self-organization processes that operate in planetary physics, solar physics, stellar physics, galactic physics, and cosmology. Self-organizing systems create spontaneous “order out of randomness”, during the evolution from an initially disordered system to an ordered quasi-stationary system, mostly by quasi-periodic limit-cycle dynamics, but also by harmonic (mechanical or gyromagnetic) resonances. The global driving force can be due to gravity, electromagnetic forces, mechanical forces (e.g., rotation or differential rotation), thermal pressure, or acceleration of nonthermal particles, while the positive feedback mechanism is often an instability, such as the magneto-rotational (Balbus-Hawley) instability, the convective (Rayleigh-Bénard) instability, turbulence, vortex attraction, magnetic reconnection, plasma condensation, or a loss-cone instability. Physical models of astrophysical self-organization processes require hydrodynamic, magneto-hydrodynamic (MHD), plasma, or N-body simulations. Analytical formulations of self-organizing systems generally involve coupled differential equations with limit-cycle solutions of the Lotka-Volterra or Hopf-bifurcation type.  相似文献   
8.
The planetary outgoing longwave radiation has been estimated since 1974 from two different series of NOAA operational polar spacecraft. The first series provided data from June 1974 through February 1978 and was designated “SR” for the scaning radiometers used at that time. This data set has been used in a variety of radiation budget and climate studies, such as that by Ohring and Gruber, 1983. The second satellite system is the currently operational TIROS-N series of satellites. Data from this series began in January 1979 and are continuing. In both systems, estimates of the outgoing longwave radiation are obtained from narrow spectral interval (10–12 μm) window radiances. A comparison is made of the estimates from the two different series of satellites in order to arrive at an assessment of their compatibility. This is important since the SR observations were taken at approximately 0900 and 2100 local times, while the TIROS-N data alternate between 0730-1930 and 0300-1500 local times. In addition, there is a period of overlap between the TIROS-N data and the broad band (5–50 μm) Nimbus 7 EArth radiation budget data. A comparison of those two data sets indiciate excellent agreement generally within about 1–2 Wm?2 on the monthly means on global and hemispherical scales. Comparisons of zonal averages indicate maximum differences as large as 9 Wm?2.Evidence is presented to suggest that observations taken at different local observing times may be biased by the diurnal variation of emitted flux, even on global scales.  相似文献   
9.
Meteoroids that dominate the Earth's extraterrestrial mass influx (50-300 microm size range) may have contributed a unique blend of exogenous organic molecules at the time of the origin of life. Such meteoroids are so large that most of their mass is ablated in the Earth's atmosphere. In the process, organic molecules are decomposed and chemically altered to molecules differently from those delivered to the Earth's surface by smaller (<50 microm) micrometeorites and larger (>10 cm) meteorites. The question addressed here is whether the organic matter in these meteoroids is fully decomposed into atoms or diatomic compounds during ablation. If not, then the ablation products made available for prebiotic organic chemistry, and perhaps early biology, might have retained some memory of their astrophysical nature. To test this hypothesis we searched for CN emission in meteor spectra in an airborne experiment during the 2001 Leonid meteor storm. We found that the meteor's light-emitting air plasma, which included products of meteor ablation, contained less than 1 CN molecule for every 30 meteoric iron atoms. This contrasts sharply with the nitrogen/iron ratio of 1:1.2 in the solid matter of comet 1P/Halley. Unless the nitrogen content or the abundance of complex organic matter in the Leonid parent body, comet 55P/Tempel-Tuttle, differs from that in comet 1P/Halley, it appears that very little of that organic nitrogen decomposes into CN molecules during meteor ablation in the rarefied flow conditions that characterize the atmospheric entry of meteoroids approximately 50 microm-10 cm in size. We propose that the organics of such meteoroids survive instead as larger compounds.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号