首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15篇
  免费   0篇
航天   15篇
  2012年   9篇
  2011年   1篇
  2010年   1篇
  2008年   1篇
  2007年   1篇
  2006年   1篇
  2004年   1篇
排序方式: 共有15条查询结果,搜索用时 31 毫秒
1.
To prevent forward contamination and maintain the scientific integrity of future life-detection missions, it is important to characterize and attempt to eliminate terrestrial microorganisms associated with exploratory spacecraft and landing vehicles. Among the organisms isolated from spacecraft-associated surfaces, spores of Bacillus pumilus SAFR-032 exhibited unusually high resistance to decontamination techniques such as UV radiation and peroxide treatment. Subsequently, B. pumilus SAFR-032 was flown to the International Space Station (ISS) and exposed to a variety of space conditions via the European Technology Exposure Facility (EuTEF). After 18 months of exposure in the EXPOSE facility of the European Space Agency (ESA) on EuTEF under dark space conditions, SAFR-032 spores showed 10-40% survivability, whereas a survival rate of 85-100% was observed when these spores were kept aboard the ISS under dark simulated martian atmospheric conditions. In contrast, when UV (>110?nm) was applied on SAFR-032 spores for the same time period and under the same conditions used in EXPOSE, a ~7-log reduction in viability was observed. A parallel experiment was conducted on Earth with identical samples under simulated space conditions. Spores exposed to ground simulations showed less of a reduction in viability when compared with the "real space" exposed spores (~3-log reduction in viability for "UV-Mars," and ~4-log reduction in viability for "UV-Space"). A comparative proteomics analysis indicated that proteins conferring resistant traits (superoxide dismutase) were present in higher concentration in space-exposed spores when compared to controls. Also, the first-generation cells and spores derived from space-exposed samples exhibited elevated UVC resistance when compared with their ground control counterparts. The data generated are important for calculating the probability and mechanisms of microbial survival in space conditions and assessing microbial contaminants as risks for forward contamination and in situ life detection.  相似文献   
2.
Lichens survive in space: results from the 2005 LICHENS experiment   总被引:5,自引:0,他引:5  
This experiment was aimed at establishing, for the first time, the survival capability of lichens exposed to space conditions. In particular, the damaging effect of various wavelengths of extraterrestrial solar UV radiation was studied. The lichens used were the bipolar species Rhizocarpon geographicum and Xanthoria elegans, which were collected above 2000 m in the mountains of central Spain and as endolithic communities inhabiting granites in the Antarctic Dry Valleys. Lichens were exposed to space in the BIOPAN-5 facility of the European Space Agency; BIOPAN-5 is located on the outer shell of the Earth-orbiting FOTON-M2 Russian satellite. The lichen samples were launched from Baikonur by a Soyuz rocket on May 31, 2005, and were returned to Earth after 16 days in space, at which time they were tested for survival. Chlorophyll fluorescence was used for the measurement of photosynthetic parameters. Scanning electron microscopy in back-scattered mode, low temperature scanning electron microscopy, and transmission electron microscopy were used to study the organization and composition of both symbionts. Confocal laser scanning microscopy, in combination with the use of specific fluorescent probes, allowed for the assessment of the physiological state of the cells. All exposed lichens, regardless of the optical filters used, showed nearly the same photosynthetic activity after the flight as measured before the flight. Likewise, the multimicroscopy approach revealed no detectable ultrastructural changes in most of the algal and fungal cells of the lichen thalli, though a greater proportion of cells in the flight samples had compromised membranes, as revealed by the LIVE/DEAD BacLight Bacterial Viability Kit. These findings indicate that most lichenized fungal and algal cells can survive in space after full exposure to massive UV and cosmic radiation, conditions proven to be lethal to bacteria and other microorganisms. The lichen upper cortex seems to provide adequate protection against solar radiation. Moreover, after extreme dehydration induced by high vacuum, the lichens proved to be able to recover, in full, their metabolic activity within 24 hours.  相似文献   
3.
Cryptoendolithic microbial communities and epilithic lichens have been considered as appropriate candidates for the scenario of lithopanspermia, which proposes a natural interplanetary exchange of organisms by means of rocks that have been impact ejected from their planet of origin. So far, the hardiness of these terrestrial organisms in the severe and hostile conditions of space has not been tested over extended periods of time. A first long-term (1.5 years) exposure experiment in space was performed with a variety of rock-colonizing eukaryotic organisms at the International Space Station on board the European EXPOSE-E facility. Organisms were selected that are especially adapted to cope with the environmental extremes of their natural habitats. It was found that some-but not all-of those most robust microbial communities from extremely hostile regions on Earth are also partially resistant to the even more hostile environment of outer space, including high vacuum, temperature fluctuation, the full spectrum of extraterrestrial solar electromagnetic radiation, and cosmic ionizing radiation. Although the reported experimental period of 1.5 years in space is not comparable with the time spans of thousands or millions of years believed to be required for lithopanspermia, our data provide first evidence of the differential hardiness of cryptoendolithic communities in space.  相似文献   
4.
As a result of increasing public and political interest in ‘space’ (i.e. solar system) exploration at the global scale, the Space Advisory Group of the European Commission has evaluated the situation in Europe with regard to its potential to participate in this ambitious global enterprise. Aspects of science, technology, environment and safety, society, spin-offs and international cooperation were all considered. The group concluded that Europe possesses sufficient key technologies and scientific expertise to play a major role in international space exploration and has recommended that the EU take a central role to ensure the success of future European space exploration, not only to give a clear political signal for the way forward but also to ensure an appropriate financial framework. In this way Europe would embrace the spirit of the European Space Policy and contribute to the knowledge-based society by investing significantly in space-based science and technology, thereby playing a strong role in international space exploration.  相似文献   
5.
The cyanobacterium Chroococcidiopsis, overlain by 3?mm of Antarctic sandstone, was exposed as dried multilayers to simulated space and martian conditions. Ground-based experiments were conducted in the context of Lichens and Fungi Experiments (EXPOSE-E mission, European Space Agency), which were performed to evaluate, after 1.5 years on the International Space Station, the survival of cyanobacteria (Chroococcidiopsis), lichens, and fungi colonized on Antarctic rock. The survival potential and the role played by protection and repair mechanisms in the response of dried Chroococcidiopsis cells to ground-based experiments were both investigated. Different methods were employed, including evaluation of the colony-forming ability, single-cell analysis of subcellular integrities based on membrane integrity molecular and redox probes, evaluation of the photosynthetic pigment autofluorescence, and assessment of the genomic DNA integrity with a PCR-based assay. Desiccation survivors of strain CCMEE 123 (coastal desert, Chile) were better suited than CCMEE 134 (Beacon Valley, Antarctica) to withstand cellular damage imposed by simulated space and martian conditions. Exposed dried cells of strain CCMEE 123 formed colonies, maintained subcellular integrities, and, depending on the exposure conditions, also escaped DNA damage or repaired the induced damage upon rewetting.  相似文献   
6.
7.
In the space experiment "Molecular adaptation strategies of microorganisms to different space and planetary UV climate conditions" (ADAPT), bacterial endospores of the highly UV-resistant Bacillus subtilis strain MW01 were exposed to low-Earth orbit (LEO) and simulated martian surface conditions for 559 days on board the European Space Agency's exposure facility EXPOSE-E, mounted outside the International Space Station. The survival of B. subtilis MW01 spores from both assays (LEO and simulated martian conditions) was determined by a colony-formation assay after retrieval. It was clearly shown that solar extraterrestrial UV radiation (λ≥110?nm) as well as the martian UV spectrum (λ≥200?nm) was the most deleterious factor applied; in some samples only a few spore survivors were recovered from B. subtilis MW01 spores exposed in monolayers. However, if shielded from solar irradiation, about 8% of MW01 spores survived in LEO conditions, and 100% survived in simulated martian conditions, compared to the laboratory controls. The results demonstrate the effect of shielding against the high inactivation potential of extraterrestrial solar UV radiation, which limits the chances of survival of even the highly UV-resistant strain of B. subtilis MW01 in the harsh environments of outer space and the martian surface.  相似文献   
8.
The multi-user facility EXPOSE-E was designed by the European Space Agency to enable astrobiology research in space (low-Earth orbit). On 7 February 2008, EXPOSE-E was carried to the International Space Station (ISS) on the European Technology Exposure Facility (EuTEF) platform in the cargo bay of Space Shuttle STS-122 Atlantis. The facility was installed at the starboard cone of the Columbus module by extravehicular activity, where it remained in space for 1.5 years. EXPOSE-E was returned to Earth with STS-128 Discovery on 12 September 2009 for subsequent sample analysis. EXPOSE-E provided accommodation in three exposure trays for a variety of astrobiological test samples that were exposed to selected space conditions: either to space vacuum, solar electromagnetic radiation at >110?nm and cosmic radiation (trays 1 and 3) or to simulated martian surface conditions (tray 2). Data on UV radiation, cosmic radiation, and temperature were measured every 10?s and downlinked by telemetry. A parallel mission ground reference (MGR) experiment was performed on ground with a parallel set of hardware and samples under simulated space conditions. EXPOSE-E performed a successful 1.5-year mission in space.  相似文献   
9.
10.
Building on an earlier article, establishment of a planetary park system for other planetary bodies is further developed. Reasons are elaborated for such a system to protect representative regions of other planetary bodies. Although a parks system might seem supererogatory, and an over-reaction to the currently very limited environmental impact of robotic and human exploration and settlement activities, four arguments are provided that suggest that such a system does have a value, even in advance of robotic and human missions. Planetary parks incorporate concepts of planetary protection, but they extend the reasons for practical protection policies beyond the utilitarian protection of scientific resources emphasized by planetary protection, into other utilitarian and intrinsic value arguments. Planetary parks might still allow for the development of non-park areas by commercial enterprise.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号