首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
航空   1篇
航天技术   1篇
航天   1篇
  2009年   1篇
  2003年   1篇
  2000年   1篇
排序方式: 共有3条查询结果,搜索用时 0 毫秒
1
1.
2.
Trapped particles of the radiation belts provide a considerable part of plasma pressure at low L-shells. The evaluations of this part during quiet times can be made on the basis of existing trapped radiation models. The radial profiles of plasma pressure at 1.2 < L < 7 were obtained by using the empirical AP8MAX model of trapped radiation (L < 6.6) and the theoretical model of the distribution of the proton fluxes in the Earth's radiation belts (L < 7) developed on the basis of the numerical solution of the radial diffusion equation with dissipation processes. The calculations were compared with AMPTE/CCE data. The contribution of quiet-time plasma pressure profile producing the quiet-time ring current to Dst-variation was obtained about 15 nT which is comparative with the magnetic field disturbances during weak and moderate magnetic storms (Dst = −40 ≈ −100 nT).  相似文献   
3.
Nose structures are objects formed by H+ particles penetrating into the inner magnetosphere [1, 2]. We present the results of experimental studies and numerical modeling of the nose structures. Statistical processing of the observations of nose structures in 1997 by the ION instrument onboard the Interball-2 satellite at heights of 10000–15000 km demonstrates that the probability of formation of the nose structures under quiet magnetic conditions (with current values K p = 0–1) in the nighttime sector of the magnetosphere is 90%. The probability of observation of the nose structures in the daytime sector equals 50% at the current value K p = 0–1, and the correlation between the observations of nose structures and K p can be improved (up to 75%) if the K p index is taken 6 h before the observed events. It is shown that nose structures are a characteristic feature not only of the substorm processes but also of quasi-stationary phenomena in the quiet magnetosphere. The nose structures observed in magnetically quiet periods are called stationary nose structures in this work. By modeling drift trajectories for protons, it is shown that the stationary nose structures are formed in all sectors of the MLT. The stationary nose structures observed by the ION instrument are modeled in the night, morning, and daytime sectors of the MLT. The relation between the stationary nose structures and ion spectral gaps is considered.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号