首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   1篇
航空   1篇
航天技术   4篇
航天   1篇
  2019年   1篇
  2008年   1篇
  2007年   1篇
  1994年   1篇
  1987年   1篇
  1968年   1篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
在小天体任务中,雷达技术可用于浅表层探测和全球内部结构探测。总结了国内外雷达技术在天体探测任务中的应用现状,分析了单站和双站雷达系统的不同应用场景,对比了单站雷达中的轨道器雷达、表面巡视器雷达的不同特点。在此基础上,研究了小天体的可能结构、可能物质,介绍了单站、双站雷达的基本工作原理,提出了针对不同结构小天体可采用的雷达探测体制。针对尺寸较大的分层结构小天体,可采用单站雷达探测天体的浅表层,获取表层和浅表层的介电常数以及表层的深度;对于尺寸较小的碎石堆结构小天体,可采用双站雷达观测天体透射波,获取天体的介电常数和全球内部结构。最后通过仿真实验,验证了双站雷达对于探测碎石堆状小行星全球内部结构的有效性。  相似文献   
2.
火星探测的微波遥感技术   总被引:1,自引:0,他引:1  
从微波遥感的角度出发,综述目前国际上对火星的探测现状,列出对微波遥感探测有影响的火星表层土壤、岩层的结构、分布及其介电特性等参数的已有研究结果,分析对火星地壳表层水(或冰)存在可能性及其分布状态的研究动向.结合地球表面微波遥感技术的最新进展,提出用主动与被动微波遥感探测火星表面浅层土壤物质状态和分层结构的可行性分析,初步研讨了火星表层是否有水(或冰)存在的探测方案.  相似文献   
3.
We developed a chronically instrumented nonhuman primate model (baboon) to evaluate the central cardiovascular responses to transient microgravity induced by parabolic flight. Instrumentation provided simultaneous recording of high fidelity (Ao) and pulmonary artery (PA) pressures, right and left ventricular and atrial pressures, Ao and PA blood flow velocities and vessel dimensions, ECG and pleural pressures. Four daily flights in 1991 and five in 1992 were flown with forty parabola per flight. Animals flown in 1991 were not controlled for volume status. Animals flown in 1992 were studied in one of three conditions: 1) volume depleted by furosemide (DH), 2) volume expanded by saline infusion (VE), and 3) euvolemic (EU, no intervention, used for echo only). Mean right atrial pressures (RAP) during 1991 flights had a variable early microgravity response: increases in n=3 and decrease in n=3 (supine) and increases in n=5, decreases in n=2 (upright). In 1992 flights, DH, upright and supine, changed -10 +/- 4.1 mmHg, -3.2 +/- 2.2 mmHg, respectively (p < .05) compared to the pull-up phase. In contrast, VE changed (from pull-up to microgravity) +13 +/- 1.5 mmHg and +4.25 +/- 2.9 mmHg (upright and supine, respectively, p < .05). EU increased with microgravity +6.9 +/- .9 mmHg (upright only). LAP responses were similar, but more variable. Finally, heart chamber areas paralleled pressure changes. Thus, right and left heart filling pressure changes with sudden entry into microgravity conditions were dependent on initial circulatory volume status and somewhat modified by position (supine vs upright).  相似文献   
4.
The microgravity environment of spaceflight produces rapid cardiovascular changes which are adaptive and appropriate in that setting, but are associated with significant deconditioning and orthostatic hypotension on return to Earth's gravity. The rapidity with which these space flight induced changes appear and disappear provides an ideal model for studying the underlying pathophysiological mechanisms of deconditioning and orthostatic hypotension, regardless of etiology. Since significant deconditioning is seen after flights of very short duration, muscle atrophy due to inactivity plays, at most, a small role. These changes in circulatory control associated with cephalad fluid shifts, rather than inactivity per se, are probably more important factors. In order to test this hypothesis in a systematic way, a multidisciplinary approach which defines and integrates inputs and responses from a wide variety of circulatory sub-systems is required. The cardiovascular experiments selected for Spacelab Life Sciences flights 1 and 2 provide such an approach. Both human and animal models will be utilized. Pre- and post-flight characterization of the payload crew includes determination of maximal exercise capacity (bicycle ergometry), orthostatic tolerance (lower body negative pressure), alpha and beta adrenergic sensitivity (isoproterenol and phenylephrine infusions), baroreflex sensitivity (ECG-gated, stepwise changes in carotid artery transmural pressure with a pneumatic neck collar), and responses to a 24 h period of 5 deg head-down tilt. Measurements of cardiac output (CO2 and C2H2 rebreathing), cardiac chamber dimensions (phased-array 2-dimensional echocardiography), direct central venous pressure, leg volume (Thornton sock), limb blood flow and venous compliance (occlusion plethysmography), blood and plasma volumes, renal plasma flow and glomerular filtration rates, and various hormonal levels including catecholamines and atrial natriuretic factor will also be obtained. The central venous catheter will be inserted immediately pre-launch and monitored with heart rate and blood pressure in-flight until cardiac output, respiratory gas exchange and quantitative 2D echocardiography measurements can be performed. In-flight hemodynamic measurements will be repeated at rest and during submaximal exercise daily and also during maximal exercise midway through the flight to document the timecourse and extent of cardiovascular changes in the payload crew. Parallel studies are planned for the animals. In addition to measurements of right atrial and aortic pressures and cardiac output, a dorsal micro-circulatory chamber will allow determinations of changes in capillary and venular architecture and function in six of the rats. The techniques and findings from many of the SLS-1 and 2 supporting studies have already yielded significant information about circulatory regulation in patients with both hypo- and hypertension. The flight experiments themselves will provide new data to test the validity of both animal and human models currently used for simulating the fluid shifts of a micro-gravity environment. The development of effective countermeasures, not only for short and long duration space travellers, but also for Earth-bound medical patients can then be physiologically based on experimental data rather than anecdote.  相似文献   
5.
This paper describes a radio interferometer that can be employed for beaming and attitude determination. It differs from conventional interferometers in that it employs a carrier modulated by a pseudonoise sequence. This enables it to provide an unambiguous angular resolution of the signal source.  相似文献   
6.
三层月壤模型的多通道微波辐射模拟与月壤厚度的反演   总被引:4,自引:0,他引:4  
由月球表面数字高程试验性地构造了整个月球表面月壤厚度的分布.根据Clementine探月卫星的紫外-可见光光学数据,计算了整个月球表面月壤中FeO+TiO2含量分布,给出了整个月球表面月壤介电常数分布.由月球表层温度的观测结果以及月壤的导热特性,给出了月尘层与月壤层温度随纬度分布的经验公式.在这些条件的基础上,建立了月尘、月壤、月岩三层微波热辐射模型.由起伏逸散定理,模拟计算了该月球模型多通道辐射亮度温度.然后,以此辐射亮度温度模拟加随机噪声为理论观测值,按三层模型提出了月壤层厚度反演方法.由于高频通道穿透深度小,由高频通道的辐射亮度温度按照两层月尘-月壤微波热辐射模型反演月尘层与月壤层的物理温度,再由穿透深度较大的低频通道辐射亮度温度反演月壤层厚度.对于反演的相对误差也进行了讨论.   相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号