首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
航天   3篇
  2004年   1篇
  2001年   2篇
排序方式: 共有3条查询结果,搜索用时 0 毫秒
1
1.
Feonychev  A. I.  Dolgikh  G. A. 《Cosmic Research》2004,42(2):117-128
A numerical investigation of the melt flow and heat and mass transfer is carried out at the crystal growth under zero gravity, when the melt detachment from ampoule walls, crystal vibration, and various magnetic fields are active. Specific features of the melt flow are demonstrated depending on the size of a detachment zone adjacent to the crystallization boundary. The velocity of the averaged flow generated by crystal vibration is determined as a function of the vibration intensity. It is shown that the crystal vibration cannot compensate a thermal capillary flow (caused by detachment of the melt from the ampoule wall) and reduce the macrosegregation of impurities. It is shown that the application of steady and rotating magnetic fields are inefficient for all ampoule methods of crystal growth under microgravity conditions.  相似文献   
2.
The numerical investigation of the impact of time-dependent accelerations (vibrations) on the flow and heat and mass transfer in the melt is carried out for the case of modeling the crystal growth by the floating zone method under conditions of microgravity that exist onboard spacecraft. The effects of the Archimedean buoyancy force and of vibrations of the free surface of fluid are considered separately. When solving the problem of the effect of the vibrations of the free surface of fluid, the previously obtained data were used. It is shown that vibrations of the free surface have a much stronger effect on the processes under consideration than the buoyancy. Some problems that are related to the newly discovered effects are discussed. The use of vibroprotected systems and a rotating magnetic field can help solve these problems. We plan to continue our investigations in future spacecraft experiments, in particular, at the International Space Station, which is under construction at the moment.  相似文献   
3.
The effect of constant and time-dependent accelerations (vibrations) on the melt flow and heat and mass transfer in the process of crystal growth by the method of directional crystallization (Bridgman method) onboard spacecraft is numerically investigated. The mathematical formulation of the problem and the technique to solve it numerically are given. The time-averaged flow arising under the action of vibrations in a nonisothermal fluid is investigated. With the help of a rational choice of dimensionless similitude parameters, a generalized dependence on the intensity of melt flow is obtained for the radial segregation of dopants. This dependence is invariant with respect to the type of motive power and thermal boundary conditions in the region of very small velocities of melt flow (creeping flow), which are characteristic for microgravity conditions. The allowable levels of constant accelerations, as well as the frequency dependences of tolerable vibrations, are obtained for five typical semiconductor materials: Ge(Ga), GaAs(Te), InSb(Te), Si(P), and Si(B). It is shown that the radial segregation of dopant is much more sensitive to microaccelerations than the axial one. In the region of small velocities, the latter is determined by the duration of the transition regime, which depends on certain physical properties of the melt. New problems that resulted from the investigations performed are discussed.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号