首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
航空   2篇
航天技术   4篇
航天   2篇
  2016年   1篇
  2010年   1篇
  2008年   1篇
  2006年   1篇
  2002年   3篇
  2000年   1篇
排序方式: 共有8条查询结果,搜索用时 15 毫秒
1
1.
Fedorov  A.  Budnik  E. 《Cosmic Research》2000,38(6):540-546
Localization of the reconnection region at the dayside magnetopause is among the unsolved problems of magnetospheric physics. There are two alternative models, one of which predicts the reconnection at the equatorial magnetopause, and the other predicts the reconnection in the region where the magnetic field of the solar wind flowing around the magnetosphere is antiparallel to the geomagnetic field. The statistical analysis carried out for 53 INTERBALL-1crossings of the high-latitude magnetopause in a special coordinate frame invariant with respect to the interplanetary conditions shows that the model of a reconnection in antiparallel fields agrees well with the experimental data.  相似文献   
2.
AMDA (Automated Multi-Dataset Analysis), a new data analysis service, recently opened at the French Plasma Physics Data Center (CDPP). AMDA is developed according to the Virtual Observatory paradigm: it is a web-based facility for on-line analyses of space physics. Data may come from its own local database as well as remote ones. This tool allows the user to perform classical manipulations such as data visualization, parameter computation and data extraction. AMDA also offers innovative functionalities such as event searches on the content of the data in either visual or automated ways, generation, use and management of time tables (event lists). The general functionalities of AMDA are presented in the context of Space Weather with example scientific use cases.  相似文献   
3.
This paper presents a statistical study of the high-latitude boundary layer (HLBL) performed on 53 Interball-1 magnetopause crossings. In the study we verify if antiparallel merging is the main source of HLBL formation when the IMF is nearly horizontal. To provide such a study we designed a new coordinate system which allowed us to analyze HLBL under varied interplanetary conditions. This coordinate system floats over the dayside magnetopause following the changes in the instant location of the reconnection site. Despite very different interplanetary conditions, the observed HLBL plasma regimes manifest systematic behavior in the “reconnection” frame of reference. We explain the observed pattern in terms of sporadic patchy reconnection in the high magnetic shear region of the magnetopause.  相似文献   
4.
Although the Mars Express (MEX) does not carry a magnetometer, it is in principle possible to derive the interplanetary magnetic field (IMF) orientation from the three dimensional velocity distribution of pick-up ions measured by the Ion Mass Analyser (IMA) on board MEX because pick-up ions' orbits, in velocity phase space, are expected to gyrate around the IMF when the IMF is relatively uniform on a scale larger than the proton gyroradius. During bow shock outbound crossings, MEX often observed cycloid distributions (two dimensional partial ring distributions in velocity phase space) of protons in a narrow channel of the IMA detector (only one azimuth for many polar angles). We show two such examples. Three different methods are used to derive the IMF orientation from the observed cycloid distributions. One method is intuitive (intuitive method), while the others derive the minimum variance direction of the velocity vectors for the observed ring ions. These velocity vectors are selected either manually (manual method) or automatically using simple filters (automatic method). While the intuitive method and the manual method provide similar IMF orientations by which the observed cycloid distribution is well arranged into a partial circle (representing gyration) and constant parallel velocity, the automatic method failed to arrange the data to the degree of the manual method, yielding about a 30° offset in the estimated IMF direction. The uncertainty of the derived IMF orientation is strongly affected by the instrument resolution. The source population for these ring distributions is most likely newly ionized hydrogen atoms, which are picked up by the solar wind.  相似文献   
5.
The antiparallel merging model places the location of the reconnection region for a dominant interplanetary magnetic field (IMF) BY at high latitudes at the dayside magnetopause and predicts that the low-latitude boundary layer (LLBL) is located on open field lines of the magnetospheric flanks. Interball-1 data obtained in the wide local time range near the low-latitude magnetopause makes it possible to analyze the LLBL plasma population and to find a link between possible reconnection at high latitudes and LLBL occurrence. We found that no boundary layer was observed in the regions which have no topological connection with the merging site. All cases of LLBL observations are located downstream from a specific boundary. This boundary coincides with the first magnetospheric field line touching the reconnection region and can be located in a wide local time region depending on the instant IMF direction. Even the LLBL on closed field lines shows the tendency to be concentrated in the vicinity of this boundary. Thus we show that all types of observed LLBLs are linked to reconnection sites predicted by the antiparallel merging model.  相似文献   
6.
We present the results on variations of ion spectra in the energy range from 1 keV to 3 MeV. The spectra measured onboard the INTERBALL Tail Probe satellite on November 13, 1995, during the satellite's passage from the dipole field lines to the lines stretched into the magnetotail are analyzed. The data of the CORALL, DOK-2, and SKA-2 instruments are used to reconstruct the ion spectra. It is shown that, when the ion spectrum along the satellite trajectory is averaged over 2-min intervals, it is smooth up to geocentric distances of 6R E. With decreasing distances, the form of the particle spectra in the region under consideration remained virtually unchanged (region from L = 11R E down to L= 6R E) and only insignificant variations of the energy of the spectral maxima are observed. Possible reasons for the observed regularities are discussed.  相似文献   
7.
This paper is devoted to the development of heat transfer models that are adequate to the real processes by using the experimental and computational methodology based on the theory of inverse heat transfer problems.  相似文献   
8.
Characteristics of low latitude boundary layer (LLBL) of the Earth’s magnetosphere are investigated using data of Interball/Tail probe observations. The role of different processes of LLBL formation is discussed. The high level of magnetosheath turbulence is taken into account. It is shown that the turbulent nature of magnetic field and plasma fluctuations in the magnetosheath is one of the main factors determining the structure of LLBL. The results of Interball/Tail probe observations of the event 9 March 1996 are analyzed. The thickness of LLBL is determined for the number of cases. The change of LLBL thickness under the influence of the changes of solar wind parameters is investigated. It is shown that variability of solar wind conditions can be the important factor controlling LLBL thickness. Results of observations are compared with the theory which explains the value of LLBL thickness as the result of plasma transport inside the magnetosphere. It is shown that the theory gives the qualitative explanation of the observed dependence of LLBL thickness on solar wind parameters.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号