首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
航天   2篇
  2010年   1篇
  2006年   1篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
Microorganisms metabolizing on clay grains in 3-km-deep Greenland basal ice   总被引:1,自引:0,他引:1  
We have discovered > 10(8) microbial cells/cm3 attached to clay grains in the bottom 13 m of the GISP2 (Greenland Ice Sheet Project) ice core. Their concentration correlates with huge excesses of CO2 and CH4. We show that Fe-reducing bacteria produce most of the excess CO2 and methanogenic archaea produce the excess CH4. The number of attached cells per clay grain is proportional to grain perimeter rather than to area, which implies that nutrients are accessed at grain edges. We conclude that Fe-reducing microbes immobilized on clay surfaces metabolize via "shuttle" molecules that transport electrons to grain edges, where they reduce Fe(III) ions at edges to Fe(II) while organic acid ions are oxidized to CO2. Driven by the concentration gradient, electrons on Fe(II) ions at grain edges "hop" to Fe(III) ions inward in the same edges and oxidize them. The original Fe(III) ions can then attach new electrons from shuttle molecules at the edges. Our mechanism explains how Fe-reducers can reduce essentially all Fe(III) in clay minerals. We estimate that the Fe(III) in clay grains in the GISP2 silty ice can sustain Fe-reducing bacteria at the ambient temperature of -9 degrees C for approximately 10(6) years. F420 autofluorescence imaging shows that > 2.4% of the cells are methanogens, which account for the excess methane.  相似文献   
2.
Mars has undergone three main climatic stages throughout its geological history, beginning with a water-rich epoch, followed by a cold and semi-arid era, and transitioning into present-day arid and very cold desert conditions. These global climatic eras also represent three different stages of planetary habitability: an early, potentially habitable stage when the basic requisites for life as we know it were present (liquid water and energy); an intermediate extreme stage, when liquid solutions became scarce or very challenging for life; and the most recent stage during which conditions on the surface have been largely uninhabitable, except perhaps in some isolated niches. Our understanding of the evolution of Mars is now sufficient to assign specific terrestrial environments to each of these periods. Through the study of Mars terrestrial analogues, we have assessed and constrained the habitability conditions for each of these stages, the geochemistry of the surface, and the likelihood for the preservation of organic and inorganic biosignatures. The study of these analog environments provides important information to better understand past and current mission results as well as to support the design and selection of instruments and the planning for future exploratory missions to Mars.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号