首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   6篇
航空   5篇
航天技术   7篇
航天   7篇
  2022年   4篇
  2021年   1篇
  2020年   1篇
  2019年   2篇
  2015年   1篇
  2013年   1篇
  2012年   2篇
  2011年   2篇
  2009年   3篇
  2004年   1篇
  2000年   1篇
排序方式: 共有19条查询结果,搜索用时 15 毫秒
1.
IGS电离层产品在双向时间频率传递中的应用   总被引:2,自引:0,他引:2  
利用IGS组织提供的全球电离层资料对卫星双向时间频率传递中的电离层误差进行修正。IGS提供特定时刻、固定经纬度网格点上的电离层总电子含量。对该电离层资料首先进行空间四点网格内插,然后利用双线性内插得到电离层穿刺点所需时刻的总电子含量,最后将得到电离层数据经过处理用于双向时间频率传递修正。结果表明:电离层对C波段的影响在(0~0.5)ns范围内,这对亚纳秒量级的时间比对是必须考虑的。IGS提供的电离层产品适合应用于双向时间频率传递,具有方法简单、准确度高和价格低廉等特点。  相似文献   
2.
互联网上计算机时间传递系统设计方案及实验结果分析   总被引:2,自引:0,他引:2  
计算机互联网的发展,使信息的传递更加方便、快捷。在时间频率用户中,中、低准确度的用户占很大比例,计算机互联网时间传递已经成为一个重要的手段。中国的网络授时系统从2000年1月开通以来,近万人访问了授时网站http://kxzh.sxso.ac.cn或其镜像站点http://Beijingtime.126.com。介绍了国家授时中心网络授时系统的设计要点,给出了网络授时传递时间准确度的测量方法,分析了网络授时实验结果。  相似文献   
3.
为满足大跨度空间范围内的时间同步需求,对基于共视时间比对原理的标准时间复现系统进行改进,采用全视时间比对方法解决原系统应用基线受限的问题。考虑实时性的要求,使用全球卫星导航系统(GNSS)超快速产品(预测部分)提供卫星位置和卫星钟差,以尽可能消除广播星历和钟差对复现结果的影响。分析了常用的几家机构发布的GNSS超快速产品,并且结合复现系统的具体应用场景要求,研究了GNSS超快速产品的选择、下载和使用方法,以及使用时需要注意的关键问题,包括产品文件的更换以及产品的时间参考基准对标准时间复现的影响。  相似文献   
4.
以GPS接收机输出的1pps信号为参考信号,采用Kalman滤波算法对铷原子钟的参数进行估计,计算铷原子钟的频率调整量,对铷原子钟进行调整,使其和UTC时间保持同步。实验结果表明,受驯铷原子钟输出1pps与UTC(NTSC)钟差的标准差优于3.5 ns,钟差峰峰值优于15 ns,100 s采样的Allan方差为1.83×10 -12 ,10000 s采样的Allan方差为6.1×10 -13 。实验证明了基于Kalman滤波的铷原子钟控制算法,使铷钟获得了较好的准确性和长期稳定性,且对其短期稳定性影响最小,是一种可靠稳定的铷钟控制方法。  相似文献   
5.
随着全球导航卫星系统(GNSS)的日益发展,国际GNSS服务组织(IGS)所产生的各项数据以及产品日趋精确,应用也非常广泛。本文基于Labwindows/CVI开发平台,设计了从IGS的FTP服务器下载实时数据或产品的自动运行软件。该软件目前运行稳定、可靠,可以为IGS数据或产品的使用者提供自动化服务。  相似文献   
6.
芯片级原子钟是一种体积小且功耗低的高精度时钟源,具有广泛的用途。针对这一特点,设计了基于GNSS的芯片级原子钟驾驭算法。以GNSS系统时作为参考,测量芯片级原子钟与GNSS系统时间的钟差,并对芯片级原子钟进行钟差建模,获取其特征参数。通过乒乓法计算出钟驾驭调整量,对芯片级原子钟进行控制,最终将芯片级原子钟驾驭到GNSS系统时间上。经过实验验证,在驾驭时间常数为100s的情况下,芯片级原子钟与GNSS系统时间的时钟同步误差在-7.5~7.5ns之间;1h频率准确度为5.8×10-13;平均时间为10000s时的频率稳定度为3×10-13。  相似文献   
7.
在高精度信号源测量中,由于Symmetricom公司的多通道相位测量设备TSC MMS(Multi-channel Measurement System)仪器自身功能限制,使得测量过程复杂繁琐,不利于操作。本文基于TSC MMS,利用网络实现远程控制与监测,设计用于精密频率源远程监测和性能测试的高精度时间频率测量系统。同时,扩展其功能,实现测量实时化、自动化,图形化。  相似文献   
8.
北斗三号系统的基础服务可以为全球用户提供精度优于20ns的信号,更高精度的时间同步应用,需要如GNSS共视、全视、PPP或卫星双向时频传递等专用方法,成本高,并且需要专业维护,只适合小范围应用。在研究了各种高精度时间比对技术的基础上,基于国家授时中心的标准时间UTC(NTSC),提出了基于北斗卫星实时共视、实时全视和实时PPP多种技术互补融合的纳秒级全球授时方法。结合时延绝对标定与分段标定组合的设备时延标定,以及振荡器动态驯服等技术,建立了标准时间远程复现系统,由服务端和用户端两部分组成。服务端由国家授时中心维护,用户仅需要安装一台标准时间复现设备,并通过互联网或北斗短报文信道自动持续从服务端获取服务数据,即可在本地恢复出溯源至标准时间UTC(NTSC)的时间频率信号。系统可为全球用户提供与UTC(NTSC)偏差小于5ns的1PPS信号,以及万秒频率稳定度优于5×10-13、相对频偏小于5×10-14的10MHz信号,授时A类不确定度优于2ns。目前已经为多个行业提供服务。  相似文献   
9.
高分辨力时间间隔测量技术在许多研究和应用领域中都具有十分重要的地位。基于FPGA技术,利用高分辨力时间数字转换器TDC芯片,设计出了一种高准确度时间间隔测量系统,该系统可以工作在不同模式及分辨力,也可以进行不同通道的选择,最多可以达到8个测量通道。测量结果显示,该测量系统可以达到18.6 ps的标准偏差。  相似文献   
10.
针对未来通信同步网等需要低成本、高精度、大范围时间同步的应用需求,研究了基于单频接收机进行卫星共视比对的可行性。提出了一种基于单频授时接收机的标准时间远程复现方法,并最终实现了一套低成本的标准时间复现设备,能提供与标准时间小于10ns(3σ)的时间偏差。该设备可用于组建时间同步网,保证网内节点间时差小于20ns,结合多级分层传递组网策略,理论上可以建立覆盖全球的时间同步网。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号