首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
航空   3篇
航天技术   3篇
  2013年   1篇
  1981年   2篇
  1975年   1篇
  1968年   1篇
  1964年   1篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
Flare phenomena in the solar atmosphere and in the terrestrial magnetosphere exhibit many similarities. The mechanical energy of enhanced photospheric motion is converted and stored in the form of magnetic potential energy in sunspot fields, which is analogous to the case of the growth phase of magnetospheric substorms. The energy release during the explosive phase is initiated by a sudden collapse in the magnetic field topology and the X-type magnetic neutral point is created in the corona. Subsequent electrical discharge takes place in the form of an intense electrojet current flowing in the base of the chromosphere at the altitude where the Cowling conductivity is a maximum. It is suggested that the acceleration of particles by field-aligned electric fields and the Ohmic heating in the chromosphere result in major features of solar flares.This article also appears inSolar Physics 40 (1975) 217–226. By way of exception this paper is reproduced here for the sake of completeness.  相似文献   
2.
Simulation experiments on spacecraft charging in space plasma and its neutralization are performed in relation to the electron beam experiment (SEPAC) on Space Shuttle Spacelab 1. A spacecraft simulator or a spherical probe is immersed in a magnetized plasma and a positive high voltage with respect to the plasma is externally applied to it. The current-voltage characteristics follow quite well with the theoretical model of Parker and Murphy [1] in the low voltage, low pressure region. When the voltage rises to more than the ionization potential of the surrounding neutral gas, it departs from the model and the effect of plasma production by the electron current becomes very important. The same kind of ionization effect as this has also been observed in our rocket experiments with an electron beam. The enhancement of the ionization effect by an additional neutral gas injection causes a considerable suppression of the potential rise of a spacecraft emitting an electron beam. This is demonstrated with the SEPAC accelerators in a large space chamber experiment.  相似文献   
3.
Electron beam experiments in space that have been done and planned in Japan are reviewed. 200eV, 1mA electron beam is emitted from a satellite and several types of wave excitation such as UHF and ωce have been observed. The satellite potential and the energy spectrum of returning electrons are measured by Langmuir probes and electrostatic energy analyser. In rocket experiments of K-10-11, K-10-12, K-9M-57, K-9M-58, K-9M-61 and K-9M-66, several types of electron guns were used whose power ranges from 1mW to 1KW. The rocket potential was measured by Langmuir probes and floating probes and optical line emission measurement and wave measurements were also done. The rocket potential was not so high as expected from the balance with ionospheric plasma but strongly affected by the plasma production by the emitted electron beam and return electrons.  相似文献   
4.
Aqueous solutions of 5-substituted hydantoins were irradiated with ultraviolet (UV) light, to investigate their structural stability against UV radiation as well as the possible photolysis products. The photolysis products were identified and the degree of photolysis was measured using reversed-phase and ion-exchange high-performance liquid chromatography. Hydantoin (2,4-imidazolidinedione) was dominantly detected as a photolysis product of 5-substituted hydantoins. With hydrolysis of UV-irradiated 5-substituted hydantoins, glycine and alanine were dominantly detected. These experimental results are important for the prebiotic photochemistry of 5-substituted hydantoins in the formation of hydantoin since they have been detected in Solar System materials.  相似文献   
5.
A review is given of the features of solar particle emissions which cause various terrestrial disturbances. Three types of corpuscular emissions, namely, solar cosmic rays, energetic storm protons and plasma clouds, are associated with intense solar flares. Outward streaming of the solar wind and of beams of enhanced activity originate from the quiescent solar corona. It is shown that these solar particles propagate through interplanetary space, being modulated in a systematic way by existing magnetic fields. Time variations of solar flare particle flux, and their energy spectrum, are discussed.  相似文献   
6.
A review is given on the distribution and origin of the large-scale electric field in the magnetosphere and its influence on the dynamical behavior of the magnetospheric plasma. Following a general discussion on the gross structure of the magnetosphere and its tail, two principal electric field systems are deduced from ground-based geomagnetic variations. One is responsible for the polar substorm, the DP 1 field, which is closely associated with the activation of the auroral electrojet. The other is responsible for the twin current vortices, the DP 2 field, and this represents the general convective system set up in the magnetospheric plasma.The origin of these magnetospheric electric fields is possibly resided in the domain of the solar wind interacting with the outer geomagnetic field. However, the mechanism, in which the energy is transferred, is still quite controversial. Several theories so far proposed are re-examined, and some modification of them are suggested to have a consistent understanding of these two types of electric fields. The effects of electric fields on magnetospheric plasma dynamics are described, such as the formation of the plasmapause, the acceleration and diffusion of energetic particles in the radiation belt.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号