首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
航空   2篇
航天技术   3篇
  2021年   1篇
  2019年   1篇
  2004年   2篇
  1995年   1篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
This paper reports on the manufacturing and evaluation of a solar power sail membrane prototype for the OKEANOS project. The in-house prototype was built by the Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency. Mechanical and electrical evaluation tests were conducted. The membrane, thin-film solar cells, reflectivity control devices were good condition after the manufacturing and handling. The improvements in the manufacturing process and design were found. The manufacturing process and design were fundamentally established. After the prototype, improvement plans for the manufacturing process and design were tried. We have a prospect of manufacturing the flight model sail and continue to the development.  相似文献   
2.
A flight test of a diode-pumped solid-state 2 μm Doppler Light Detection And Ranging (LIDAR) system was conducted on-board the NASA Ames DC-8 Airborne Laboratory. This was the first ever airborne demonstration of a 2 μm diode-pumped solid-state Doppler LIDAR. The LIDAR performance was verified by comparing the true-airspeed (TAS) estimate with that found using the pneumatic air data system; excellent agreement was found. The capabilities of this pulsed 2 μm Doppler LIDAR system include high bandwidth air data determination without the need for extensive forebody calibration, remote wind profiling as far as several kilometers away from the aircraft, eye-safe laser transmission at 2 μm, and diode-pumped solid-state design for compact construction and reliable performance  相似文献   
3.
The current global positioning system (GPS) provides limited availability and capability for a country like Japan where mountainous terrain and urban canyons do not allow a clear skyline to the horizon. At present, the Japanese Quasi-Zenith Satellite System (QZSS) is under investigation through a cooperative effort between the government and the private sector. QZSS is considered a multi-function satellite system, as it is able to provide communication, broadcasting, and positioning services for mobile users in a specified region with a high elevation angle. The additional GPS compatible signals from QZSS can remarkably improve the availability, accuracy, and capability of GPS positioning. This work focuses on the performance of GPS augmentation using the proposed QZSS. The QZSS satellite constellation and signal structure are briefly reviewed. Positioning with pseudo-range and carrier phase are discussed. The performance of GPS augmentation using QZSS in the Asian-Pacific and Australian area is studied using software simulations. The results are presented using the number of visible satellites as a measure of availability, GDOP as a measure of accuracy, and ambiguity success rate as a measure of capability of carrier-phase-based positioning with spatial and temporal variations. The results show that the QZSS will improve not only the availability and accuracy of GPS positioning, but will also enhance the capability of the GPS carrier-phase-based positioning in Japan and neighboring regions.  相似文献   
4.
A plant growth system for crop production under microgravity is part of a life supporting system designed for long-duration space missions. A plant growth in soil in space requires the understanding of water movement in soil void spaces under microgravity. Under 1G-force condition, on earth, water movement in porous media is driven by gradients of matric and gravitational potentials. Under microgravity condition, water movement in porous media is supposed to be driven only by a matric potential gradient, but it is still not well understood. We hypothesized that under microgravity water in void spaces of porous media hardly moved comparing in void spaces without obstacles because the concave surfaces of the porous media hindered water movement. The objective of this study was to investigate water movement on the convex surfaces of porous media under microgravity. We conducted parabolic flight experiments that provided 20–25?s of microgravity at the top of a parabolic flight. We observed water movement in void spaces in soil-like porous media made by glass beads and glass spheres (round-bottomed glass flasks) in the different conditions of water injection under microgravity. Without water injection, water did not move much in neither glass beads nor glass spheres. When water was injected during microgravity, water accumulated in contacts between the particles, and the water made thick fluid films on the particles surface. When the water injection was stopped under microgravity, water was held in the contacts between the particles. This study showed that water did not move upward in the void spaces with or without the water injection. In addition, our results suggested that the difficulty of water movement on the convex (i.e. particle surfaces) might result in slower water move in porous media under microgravity than at 1G-force.  相似文献   
5.
We propose a new type of wide band X-ray imaging spectrometer as a focal plane detector of the super mirror onboard on future X-ray missions including post Astro-E2. This camera is realized by the hybrid of back illumination CCDs and a back supportless CCD for 0.05–10 keV band, and a Micro Pixel Gas Chamber detecting X-rays at 10–80 keV.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号