首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
航空   2篇
航天技术   2篇
  2013年   1篇
  2009年   1篇
  1968年   1篇
  1966年   1篇
排序方式: 共有4条查询结果,搜索用时 46 毫秒
1
1.
2.
Electrodynamics of the ionosphere   总被引:1,自引:0,他引:1  
We review various important studies in the field of electrodynamics of the ionosphere. Four topics are presented; (1) conductivity, (2) wind and the dynamo theory, (3) drift and its effect on the ionosphere formation and (4) interaction between wind and electromagnetic field.We point out some important future problems. They are: (1) We need to consider in the dynamo theory of the geomagnetic daily variation the connection of the ionosphere of both hemispheres by lines of force of the geomagnetic field. (2) Non-periodic wind may be important for producing electric field. (3) Drift to cause interchange of ionization contained in tubes of the geomagnetic field lines, and diffusion of ionization in these tubes control dynamic behaviours of the F2 region. (4) Interaction between wind and electric current presents a new problem. (5) The ionosphere and the magnetosphere react to each other.  相似文献   
3.
We detected hard X-ray emission from the unidentified Galactic bulge source 1RXS J175721.2-304405 with ASCA. The observed absorption column, flux and power-law index led us to consider that 1RXS J175721.2-304405 may be a new low-mass X-ray binary located near the Galactic center. Furthermore, the X-ray light-curve shows a step-function-like time variability, which is likely due to the occultation of a companion star. Future follow-up observations by missions such as ASTROSAT may reveal a periodic eclipse from 1RXS J175721.2-304405 if it is covered long enough. Since the long orbital period suggests a giant companion, follow-up observations will give firm evidence that 1RXS J175721.2-304405 is a new and rare eclipsing low-mass X-ray binary with a giant companion.  相似文献   
4.
By applying the cross-phase method and the amplitude-ratio method to magnetic field data obtained from two ground stations located close to each other, we can determine the frequency of the field line resonance (FLR), or the field line eigenfrequency, for the field line running through the midpoint of the two stations. From thus identified FLR frequency we can estimate the equatorial plasma mass density (ρ)(ρ) by using the T05s magnetospheric field model [Tsyganenko, N.A., Sitnov, M.I. Modeling the dynamics of the inner magnetosphere during strong geomagnetic storms, J. Geophys. Res. 110, A03208, 2005] and the equation of Singer et al. [Singer, H.J., Southwood, D.J., Walker, R.J., Kivelson, M.G. Alfven wave resonances in a realistic magnetospheric magnetic field geometry, J. Geophys. Res. 86 (A6) 4589–4596, 1981].  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号